TAKE-HOME FINAL EXAM

due Thursday, December 12, 2019

INSTRUCTIONS Undergraduates should do 5 of the following questions, and graduate students should do 7.

1. Write a PDA P for the language $\{a^j b^k c^j | j, k \geq 0\}$. Make it as small as possible, subject to the following constraints:
 - It has a single accept state
 - it empties the stack before accepting
 - each transition is a push or a pop

Then, use the construction of lemma 2.27 to construct a CFG directly from P.

2. Pumping lemma:
 (a) Show that $A = \{ w \in \{a, b, c\}^* | w$ has more a’s than b’s $\}$ is not regular.
 (b) Show that $B = \{ w | w \in \{a, b, c\}^*, n_a(w)/n_b(w) = n_c(w) \}$ is not context-free. (Here, $n_a(w)$ means the number of a’s in w, similarly for $n_b(w)$ and $n_c(w)$.)
 (c) Show that $C = \{ a^i | i \geq 0 \}$ is not context free

3. Convert the NFA of figure 1 to a DFA. The start state is q_0, the accepting set is $F = \{q_3\}$, and “epsilon” means ϵ.

4. Let A and B be two disjoint languages. Say that language C separates A and B if $A \subseteq C$ and $B \subseteq \overline{C}$. Show that any two co-Turing-recognizable languages are separable by some decidable language.

5. Let $S = \{ \langle M \rangle | M$ is a DFA that accepts w^R whenever it accepts $w \}$. Show that S is decidable.

6. Build some context free items:
 (a) Construct a PDA M (show diagram) such that
 $$L(M) = \{ ax^nby^mcz^{2m}dx^n | m, n \geq 0 \}.$$
 (b) Show a CFG G such that
 $$L(G) = \{ x^n # y^m | 0 \leq 2m \leq n \leq 4m \}.$$

7. Consider the grammar G given by $S \rightarrow aSb|bSa|SS|\epsilon$. We want to show very carefully that $L(G) = A$ where $A = \{ w \in \{a, b\}^* | w$ contains an equal number of a’s and b’s $\}$.
(a) Prove the following: (Claim 1) if \(w \in A \) and \(w = axb \) or \(w = bxa \), then \(x \in A \).

(b) Prove the following: (Claim 2) if \(w \in A \) and \(w = axa \) or \(w = bxb \), then there are strings \(y, z \in A \) such that \(w = yz \).

(c) Prove by induction on the length of \(w \) that if \(w \in A \) then there is a derivation \(S \Rightarrow w \).

(d) Argue that if there is a derivation \(S \Rightarrow w \), then \(w \) has an equal number of a’s and b’s.

Reductions and Completeness

We have defined a \(m \)-reduction (here \(m \) means “mapping” or “many-one”) from language \(A \) and to \(B \) as \(A \leq_m B \) iff there is a computable string function \(f : \Sigma^* \rightarrow \Sigma^* \) satisfying

\[
\forall w \in \Sigma^*, w \in A \iff f(w) \in B.
\]

Furthermore, we define a language \(K \) to be \(m \)-complete (formally “complete for the Turing-recognizable sets under \(\leq_m \)”) if (i) \(K \) is Turing-recognizable and (ii) for any Turing-recognizable language \(A, A \leq_m K \). Note that in class we saw that both \(A_{TM} \) and \(HALT_{TM} \) are \(m \)-complete.

8. Show the following

(a) If \(A \leq_m B \) and \(B \leq_m C \), then \(A \leq_m C \).

(b) If \(A \leq_m B \) and \(B \) is Turing-decidable, then \(A \) is Turing-decidable.

(c) If \(A \leq_m B \) and \(B \) is Turing-recognizable, then \(A \) is Turing-recognizable.

(d) If \(A \leq_m B \), \(B \) is Turing-recognizable, and \(A \) is \(m \)-complete, then \(B \) is \(m \)-complete.

A Computational Hierarchy via Alternating Quantifiers

We say that a set \(A \) is \(\Sigma_k \) if it can be characterized as

\[
A = \{ x | \exists y_1 \forall y_2 \exists y_3 \ldots Q_k y_k \langle x, y_1, y_2, y_3, \ldots, y_k \rangle \in B \}
\]

where \(B \) is decidable and quantifier \(Q_k = \exists \) if \(k \) is odd and \(\forall \) if it is even. (Here \(x \) and all the \(y_i \)'s are strings over the same alphabet.) Similarly, \(A \) is \(\Pi_k \) if we can write

\[
A = \{ x | \forall y_1 \exists y_2 \forall y_3 \ldots Q_k y_k \langle x, y_1, y_2, y_3, \ldots, y_k \rangle \in B \}
\]

where \(B \) is decidable and quantifier \(Q_k = \forall \) if \(k \) is odd and \(\exists \) if it is even.

Other definitions:

- We can also say that \(A \) is \(\Sigma_k \) if it is Turing-recognizable with an oracle from \(\Sigma_{k-1} \)
- We define \(A \) as \(\Delta_k \) if it is Turing-decidable with an oracle from \(\Sigma_{k-1} \). (Equivalently, \(A \leq_T B \) for some \(B \in \Sigma_{k-1} \).)

Observations:

- the decidable languages are \(\Sigma_0 = \Pi_0 = \Delta_1 \) (these are the base cases)
• the recognizable languages are Σ_1
• if a set A is Σ_k then its complement \overline{A} is Π_k
• for example $TOT_{TM} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$ is Π_2 since we can write $TOT_{TM} = \{ \langle M \rangle \mid \forall w \exists t \langle M, w, t \rangle \in B \}$ where $B = \{ \langle M, w, t \rangle \mid M$ accepts w in at most t steps $\}$

9. (a) Show that if A is Σ_k then it is both Σ_{k+1} and Π_{k+1}.
(b) Show that if A is both Σ_k and Π_k, then A is Δ_k

10. Give a Σ_k or Π_k characterization of the following problems
(a) $INF_{TM} = \{ \langle M \rangle \mid L(M)$ has an infinite number of strings $\}$
(b) $COF_{TM} = \{ \langle M \rangle \mid$ the complement of $L(M)$ has a finite number of strings $\}$
(c) $ETM = \{ \langle M \rangle \mid L(M) = \emptyset \}$
(d) $CFL_{TM} = \{ \langle M \rangle \mid L(M)$ is a CFL $\}$

Figure 1: NFA for problem 3