Assignment 6

due Wednesday, December 4, 2019

1. Carefully describe (give state diagram) a TM which will add one to the binary representation of a number. The number will have a $ on the left end.
 - If the input is the empty string, then the output should be $.
 - If the input is $, the output should be $0
 - If the input is (for example) $1010, the output should be $1011, and $111 should result in $1000
 - Leading zeroes are acceptable ($010 becomes $011)
 - After correctly transforming the input, halt by entering the accepting state
 - If the input is poorly formed (such as $$ or $01\$0), reject it.

2. Exercise 3.13: What can a Turing machine with stay-put instead of left compute?

3. Exercise 4.30: Let \(A \) be a Turing-recognizable language consisting of descriptions of Turing machines \(\{ \langle M_1 \rangle, \langle M_2 \rangle, \ldots \} \), where every \(M_i \) is a decider. Prove that some decidable language \(D \) is not decided by any decider \(M_i \) whose description appears in \(A \). (Hint: you may find it helpful to consider an enumerator for \(A \).)

4. (Grads) Exercise 4.17 (2nd ed) or 4.18 (3rd ed): Let \(C \) be a language. Prove that \(C \) is Turing-recognizable if and only if a decidable language \(D \) exists such that
 \[
 C = \{ x \mid \exists y (\langle x, y \rangle \in D) \}.
 \]

 Note: In the text this is a starred (difficult) problem. It should not be, and is important in understanding the Turing-recognizable (\(\equiv \) recursively enumerable) languages. It has also an important analogy in the characterization of \(NP \).

 Hint (for \(\Rightarrow \)): Think of \(y \) as the number of steps for which to simulate the TM for \(C \).