CIS 210

- Guest: Earthquake Watch, Dr. Brittany Erickson
- Review
- Data Mining – k-means cluster analysis algorithm

CIS 210

Data mining:
application of automated techniques that attempt to discover underlying patterns in the data.

For example, cluster analysis:
data mining technique that attempts to divide the data into meaningful groups called clusters.

CIS 210

def visualizeQuakes(k, r, fname):
 """ (int, int, str) \rightarrow None
 Data mining.
 >>> visualizeQuakes(6, 7, 'earthquakes.txt')
 """
 qdatadict = readFile(fname)
 qCentroids = createCentroids(...)
 qClusters = createClusters(...)
 eqDraw(...)
 return None

CIS 210

Data mining and Data Mining

- access data
 file processing
 inspect (clean) data
 store data in (appropriate) Python data structures
- data analysis (summarizing), data mining (exploring)
 mean range k-means cluster analysis
 median standard deviation
 mode
- report on results of data analysis, e.g.,
 frequency occurrence table/chart
 data visualization

CIS 210 DATA MINING

A primary goal of data visualization is to communicate information clearly and efficiently via statistical graphics, plots, and information graphics.

Numerical data may be encoded ... to visually communicate a quantitative message.

Effective visualization helps users analyze and reason about data and evidence. It makes complex data more accessible, understandable and usable.
Data mining:
application of automated techniques that attempt to discover underlying patterns in the data.

Cluster analysis:
data mining technique that attempts to divide the data into meaningful groups called clusters

Cluster:
data values that show some kind of similarity to each other while exhibiting dissimilarity to data values outside the cluster

Implement the k-means cluster analysis data mining algorithm to analyze data about earthquakes of magnitude 5 or greater that have occurred across the planet over the past year.

Graphically report the earthquake clusters discovered by the k-means algorithm on a world map.
CIS 210

IMPLEMENTING K-MEANS CLUSTER ANALYSIS

1) review k-means clustering algorithm
2) work some examples – simple data, earthquake data
3) review high level structure of program – key functions
4) review important data structures (including earthquake data file)
5) code from the bottom up
6) test each function thoroughly before proceeding to the next
7) integrated testing at each level

CIS 210

1) review k-means clustering algorithm
 -- decide how many clusters (k)
 -- assign each item from the data set to one of the k clusters

CIS 210

Clustering the data – k-means clustering algorithm

1) decide how many clusters (k)

Choose k depending on the data and desired results.

For example:

 - too hot, too cold, just right
 - group1, group2, group3, ..., group 10

Run the analysis for different values of k.

CIS 210

k-means cluster analysis

1) decide how many clusters (k)

2) assign each item from the data set to a cluster:
 determine similarity of the item to other data in the cluster
 assign item to cluster where data are most similar

CIS 210

Clustering the data – k-means clustering algorithm

1) decide how many clusters (k)

2) assign each data item to a cluster:
 determine similarity of the data item to other data in the cluster
 -- determine a centroid for each cluster
 -- determine a measure of similarity
 \[\Rightarrow \text{measure the similarity of the data item to the centroid of each cluster} \]
 assign item to cluster where data are the most similar

3) do this until done

CIS 210

k-means cluster analysis

1) decide how many clusters (k)

2) assign each data item to a cluster:
 by measuring the distance from a data item to the centroid of each cluster, then choosing the closest cluster
 \[a) \text{need initial centroids for initial clusters to form around} \]
 \[b) \text{need to be precise about similarity (distance) measure} \]
 3) do until done:
 \[c) \text{need to determine when to stop} \]
Clustering the data – k-means clustering algorithm

2) assign each data item to a cluster:
 determine similarity of the data item to other data in the cluster
 -- determine a centroid for each cluster:
 the mean value of the items in the cluster
 -- determine a measure of similarity
distance between item and centroid
 measure the similarity of the data item to the centroid for each cluster
assign item to cluster where data are the most similar

Initial centroids?
→ choose k random points from the data set for starter centroids.

Precise about similarity/distance measure?
Earthquake data items are points
→ use distance between two data points:
 -- data point from the data set
 -- a cluster centroid point

similarity – multiple ways of measuring –
here, use distance between two data points:
 -- data point from data set
 -- a cluster centroid point

Distance: Euclidean distance
\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Each cluster is a collection of data points associated - measured by Euclidean distance - with the centroid of the cluster.

Centroid:
mean of a cluster (collection of data points)

Note that, after the initial set of centroids, the centroid might not be a member of the collection of data points.

k-means cluster analysis
1) decide how many clusters (k)
2) assign each data item to a cluster:
 randomly choose k of the data points to serve as starter centroids for the k clusters.
 assign each data point to the cluster with the centroid that is the closest (Euclidean distance) to the data point
3) do until done:
 c) need to determine when to stop

k-means cluster analysis
1) decide how many clusters (k)
2) assign each data item to a cluster:
 randomly choose k of the data points to serve as starter centroids for the k clusters.
 assign each data point to the cluster with the centroid that is the closest (Euclidean distance) to the data point
3) repeat until done: need to determine when to stop
 recalibrate the centroids of each cluster
 re-assign data items to clusters
K-Means Cluster Analysis Algorithm

3) repeat until done: need to determine when to stop
e.g., # repetitions, clusters are stable
this algorithm: choose a reasonable value for r

def visualizeQuakes(k, r, fname):
 ''' (int, int, str) → None
 Data mining.

 >>> visualizeQuakes(6, 7, 'earthquakes.txt')
 '''
 qdatadict = readFile(fname) # access file data
 qCentroids = createCentroids(...) # process data
 qClusters = createClusters(...) # cluster analysis
 eqDraw(...) # report - visualization
 return None

For Example:
data points – [34, 44, 10, 99, 50, 67, 0, 29, 50, 100]
k - ? design decision, e.g., 3 (low, medium, high)
centroids = [10, 50, 67] (initially, random choices from data)
clusters = [[[], [], []] → [[??], [??], [??]] (first round)
 centroids -> [??, ??, ??] (mean of each first round cluster)
clusters -> [[??], [??], [??]] (second round - use new centroids
to create new clusters)
centroids -> [??, ??, ??] (mean of each second round cluster)
centroids -> [[??], [??], [??]] (repeat until done)
For Example:

data points – [34, 44, 10, 99, 50, 67, 0, 29, 50, 100]
k - ? design decision, e.g., 3 (low, medium, high)

centroids = [10, 50, 67] (initially, random choices from data)
clusters = [[]], [[]], [[]] -> [[0,10,29], [34,44,50,50], [67,99,100]]

centroids -> [13.0, 44.5, 88.67] (mean of each cluster)
clusters -> [[0, 10, 29], [34, 44, 50, 50], [67, 99, 100]]

centroids -> [5, 41.4, 88.67] (mean of each new cluster)
clusters -> [[0, 10], [29, 34, 44, 50, 50], [67, 99, 100]]

31

For Example: using a data dictionary (createClusters)

data points – {1: [144.8897, 38.0555], 2: [45.5993, 34.9144], 3: [45.9411, 34.9144], 4: [58.2176, 9.1259], 5: [168.5847, -21.5194], 6: [-14.0995, -11.7482], 7: [168.4966, -21.4067], 8: [73.9098, 38.2556], 9: [168.4966, -21.5266], 10: [141.5594, 32.4901]}

centroids = [[-84.0888, -41.4839], [141.5594, 32.4901], [144.8897, 38.0555], [45.5993, 34.9144], [73.9098, 38.2556], [168.5847, -21.5194]]

clusters are lists of dictionary keys
[[5, 7, 11], [2], [3, 4, 8], [6], [1, 9, 12], [10]]

33

IMPLEMENTING K-MEANS CLUSTERING

✓ review k-means clustering algorithm
✓ work some examples – simple data, earthquake data

1) review high level structure of program – key functions
2) review important data structures (including earthquake data file)
3) code from the bottom up
4) testing each function thoroughly before proceeding to the next
5) integrated testing at each level

34

def readFile(filename):
 with open(filename, "r") as datafile:
 datadict = {}
 key = 0
 for aline in datafile:
 items = aline.split()
 key = key + 1
 lat = float(items[3])
 lon = float(items[4])
 datadict[key] = [lon, lat]
 return datadict

36
CIS 210
def createCentroids(k, datadict):
 centroids=[]
 centroidCount = 0
 centroidKeys = []

 while centroidCount < k:
 rkey = random.randint(1,len(datadict))
 if rkey not in centroidKeys:
 centroids.append(datadict[rkey])
 centroidKeys.append(rkey)
 centroidCount = centroidCount + 1
 return centroids

37

CIS 210
def createClusters(k, centroids, datadict, r):
 on each pass (for a total of r passes):
 (1) set clusters to empty, e.g., [[]], [[]], [[]]

 (2) for each key (#earthquake) in datadict
 for each centroid
 compute distance between
 datadict value(s) and the centroid

 choose the minimum distance
 put key in corresponding cluster

 39

CIS 210
>>> import random
>>> help(random.randint)
Help on method randint in module random:

randint(a, b) method of random.Random instance
Return random integer in range [a, b], including both end points.

38

CIS 210
def createClusters(k, centroids, datadict, r), cont’d
 on each pass (until r passes):
 (3) for each cluster
 determine the mean of the cluster
 update centroids list with that mean

 [repeat – next pass – until r passes]

40

CIS 210
eqDraw

note that len(colorlist) must be >= k

41

CIS 210

IMPLEMENTING K-MEANS CLUSTERING
✓ review k-means clustering algorithm
✓ work some examples – simple data, earthquake data
✓ review high level structure of program – key functions
✓ review important data structures (including earthquake data file)
✓ code from the bottom up
1) testing each function thoroughly before proceeding to the next
2) integrated testing at each level

42
A Structured Approach to Computational Problem Solving

- review the project specification thoroughly
- write examples of expected results for specified inputs – re-review spec, if needed
- develop, review, and/or modify a problem-solving approach, using natural language, algorithms, pseudocode (not Python code)
- check algorithm using your examples – review algorithm, re-review spec, if needed

Starting with the lowest level function
- write the function header
- write the function declaration – type contract
- write the function documentation – brief description
- write the function documentation – examples of use (use ones developed earlier)
- write the return statement

- using tools from the Python toolkit, start writing the body of the function
- test often, review as needed
- test using examples in the docstring, and then project spec, and then others

CIS 210 Learning Outcomes

- understand, develop, implement algorithms for computational problem solving;
- use structured design and testing methods to develop and implement programs;
- read, write, revise, document, test, and debug code;
- demonstrate robust mental models of data representation and code execution;
- demonstrate good understanding of a high level programming language;
- introduce and/or implement a sampling of classic computer science problem domains and algorithms.