Logistics

- Updated website!
- Lab 3 today 17:00-17:50
 - Intel Threading Building Blocks
 https://www.threadingbuildingblocks.org/intel-tbb-tutorial
- Assignment 1 available
Outline

- Scalable parallel execution
- Parallel execution models
- Isoefficiency
- Parallel machine models
- Parallel performance engineering
Scalable Parallel Computing

- Scalability in parallel architecture
 - Processor numbers
 - Memory architecture
 - Interconnection network
 - Avoid critical architecture bottlenecks
- Scalability in computational problem
 - Problem size
 - Computational algorithms
 - Computation to memory access ratio
 - Computation to communication ratio
- Parallel programming models and tools
- Performance scalability
Performance Metrics and Formulas

- T_1 is the execution time on a single processor.
- T_p is the execution time on a p processor system.
- $S(p)$ (S_p) is the **speedup**
 \[S(p) = \frac{T_1}{T_p} \]
- $E(p)$ (E_p) is the **efficiency**
 \[\text{Efficiency} = \frac{S_p}{p} \]
- $Cost(p)$ (C_p) is the **cost**
 \[Cost = p \times T_p \]
- Parallel algorithm is **cost-optimal**
 - Parallel time = sequential time ($C_p = T_1$, $E_p = 100\%$)
Amdahl’s Law (Fixed Size Speedup)

- Let f be the fraction of a program that is sequential
 - $1-f$ is the fraction that can be parallelized
- Let T_1 be the execution time on 1 processor
- Let T_p be the execution time on p processors
- S_p is the speedup
 \[S_p = \frac{T_1}{T_p} = \frac{T_1}{(fT_1 + (1-f)T_1/p)} = \frac{1}{(f + (1-f)/p)} \]
- As $p \to \infty$
 \[S_p = 1/f \]
Amdahl’s Law and Scalability

- Scalability
 - Ability of parallel algorithm to achieve performance gains proportional to the # processors and the size of the problem

- When does Amdahl’s Law apply?
 - When the problem size is fixed
 - Strong scaling \((p \to \infty, S_p = S_\infty \to 1 / f)\)
 - Speedup bound is determined by the degree of sequential execution time in the computation, not # processors!!!
 - Uhh, this is not good … Why?
 - Perfect efficiency is hard to achieve

- See original paper by Amdahl on webpage
Gustafson-Barsis’ Law (Scaled Speedup)

- Often interested in larger problems when scaling
 - How big of a problem can be run (HPC Linpack)
 - Constrain problem size by parallel time

- Assume parallel time is kept constant
 - \(T_p = C = (f + (1-f)) \times C \)
 - \(f_{seq} \) is the fraction of \(T_p \) spent in sequential execution
 - \(f_{par} \) is the fraction of \(T_p \) spent in parallel execution

- What is the execution time on one processor?
 - Let \(C=1 \), then \(T_s = f_{seq} + p(1 - f_{seq}) = 1 + (p-1)f_{par} \)

- What is the speedup in this case?
 - \(S_p = T_s / T_p = T_s / 1 = f_{seq} + p(1 - f_{seq}) = 1 + (p-1)f_{par} \)
Gustafson-Barsis’ Law and Scalability

- **Scalability**
 - Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem.

- When does Gustafson’s Law apply?
 - When the problem size can increase as the number of processors increases.
 - *Weak scaling* ($S_p = 1 + (p-1)f_{par}$)
 - Speedup function includes the number of processors!!!
 - Can maintain or increase parallel efficiency as the problem scales.

- See original paper by Gustafson on webpage.
Estimating Running Time

- Scalability requires that T_∞ be dominated by T_1

$$T_P \approx \frac{T_1}{P} + T_\infty \text{ if } T_\infty \ll T_1$$

- Increasing work (T_1) hurts parallel execution proportionately
- The span impacts scalability, even for finite P
Parallel Slack

- Sufficient parallelism implies linear speedup

\[T_P \approx \frac{T_1}{P} \quad \text{if} \quad \frac{T_1}{T_\infty} \gg P \]

- Linear speedup
- Parallel slack

- Scaling the problem is a way to increase the amount of parallelism available
Why Aren’t Parallel Applications Scalable?

- Sequential performance
- Critical Paths
 - Dependencies between computations spread across processors
- Bottlenecks
 - One processor holds things up
- Algorithmic overhead
 - Some things just take more effort to do in parallel
- Communication overhead
 - Spending increasing proportion of time on communication
- Load Imbalance
 - Makes all processor wait for the “slowest” one
 - Dynamic behavior
- Speculative loss
 - Do A and B in parallel, but B is ultimately not needed
Critical Paths

- Long chain of dependence
 - Main limitation on performance
 - Resistance to performance improvement

- Diagnostic
 - Performance stagnates to a (relatively) fixed value
 - Critical path analysis

- Solution
 - Eliminate long chains if possible
 - Shorten chains by removing work from critical path
Bottlenecks

- How to detect?
 - One processor A is busy while others wait
 - Data dependency on the result produced by A

- Typical situations:
 - N-to-1 reduction / computation / 1-to-N broadcast
 - One processor assigning job in response to requests

- Solution techniques:
 - More efficient communication
 - Hierarchical schemes for master slave

- Program may not show ill effects for a long time
- Shows up when scaling
Algorithmic Overhead

- Different sequential algorithms to solve the same problem
- All parallel algorithms are sequential when run on 1 processor
- All parallel algorithms introduce addition operations (Why?)
 - *Parallel overhead*
- Where should be the starting point for a parallel algorithm?
 - Best sequential algorithm might not parallelize at all
 - Or, it doesn’t parallelize well (e.g., not scalable)
- What to do?
 - Choose algorithmic variants that minimize overhead
 - Use two level algorithms
- Performance is the rub
 - Are you achieving better parallel performance?
 - Must compare with the best sequential algorithm
What is the maximum parallelism possible?

- Depends on application, algorithm, program
 - Data dependencies in execution

- Remember MaxPar
 - Analyzes the earliest possible “time” any data can be computed
 - Assumes a simple model for time it takes to execute instruction or go to memory
 - Result is the maximum parallelism available

- Parallelism varies!
Embarrassingly Parallel Computations

- No or very little communication between processes
- Each process can do its tasks without any interaction with other processes

Examples
- Numerical integration
- Mandelbrot set
- Monte Carlo methods
Calculating π with Monte Carlo

- Consider a circle of unit radius
- Place circle inside a square box with side of 2 in

The ratio of the circle area to the square area is:

$$\frac{\pi \times 1 \times 1}{2 \times 2} = \frac{\pi}{4}$$
Monte Carlo Calculation of π

- Randomly choose a number of points in the square
 - Randomly choose (x, y) where $0 \leq x, y \leq 2$
- For each point p, determine if p is inside the circle
- The ratio of points in the circle to points in the square will give an approximation of $\pi/4$
Good ol’ Pipeline

- A pipeline is a linear sequence of stages
- Data flows through the pipeline
 - From Stage 1 to the last stage
 - Each stage performs some task
 - uses the result from the previous stage
 - Data is thought of as being composed of units (items)
 - Each data unit can be processed separately in pipeline
 - Sequence of stages (tasks) matters (functional operation)
 - Data sequence might matter

- Pipeline computation is a special form of *producer-consumer* parallelism
 - Producer tasks output data...
 - ... used as input by consumer tasks
Pipeline Model

- Stream of data operated on by succession of tasks
 - Assumption: data input and output must be in sequence
- Each task is done in a separate stage

Consider 3 data units and 4 tasks (stages)
- Sequential pipeline execution (no parallel execution)
Where is the Concurrency? (Serial Pipeline)

- Pipeline with serial stages
 - Each stage runs serially (i.e., can not be done in parallel)
 - Assume that we can not parallelize the tasks (for now)

- What can we run in parallel?
 - Think about data parallelism
 - Provide a separate pipeline for each data item

What do you notice as we increase # data items?
Where is the Concurrency? (Serial Pipeline)

- 10 data items (streaming)
- What is happening here in this region?
- 10 data items (streaming)
- How much parallelism is there?
- Why not reuse the processors?

Processor
1
2
3
4
5
6
7
8
9
10

Begin

End

startup

finish

CIS 431/531: Parallel Computing, University of Oregon
Lecture 4 – Parallel Performance Theory - 2
Pipeline Performance

- N data and T tasks
- Suppose the tasks execution times are non-uniform
- Suppose a processor is assigned to execute a task
- What happens to the throughput?
- What limits performance?
- Slowest stage limits throughput
 … Why?
- Little’s Law comes into play
Pipeline Performance

- N data and T tasks
- Each task takes unit time t
- Sequential time = N*T*t = NT (t=1)
- Parallel pipeline time
 \[= \text{start} + \text{finish} + \text{parallel}\]
 \[= T-1 + T-1 + \frac{(N-2(T-1))}{T}\]
 \[= \frac{2T-2}{T} + \frac{N}{T} + \frac{(2T-2)}{T} = \frac{N}{T} + \frac{(2T-2)(1+1/T)}{T}\]
 \[= O\left(\frac{N}{T}\right) \quad \text{(for} \quad N \gg T)\]
- Try to find a lot of data to pipeline
- Try to divide computation in a lot of pipeline tasks
 - More tasks to do (longer pipelines) = more parallelism
 - Shorter tasks to do (as a result of breaking apart tasks)
- Interested in pipeline throughput
Analytical / Theoretical Techniques

- Involves simple algebraic formulas and ratios
 - Typical variables are:
 - data size \((N) \), number of processors \((P) \), machine constants
 - Want to model performance of individual operations, components, algorithms in terms of the above
 - be careful to characterize variations across processors
 - model them with max operators
 - Constants are important in practice
 - use asymptotic analysis carefully

- Scalability analysis
 - Isoefficiency (Kumar)
Isoefficiency

- Goal is to quantify scalability
- How much increase in problem size is needed to retain the same efficiency on a larger machine?
- Efficiency
 - \(T_1 / (p \times T_p) \times 100\% \)
 - \(T_p = \) computation + communication + idle
- Isoefficiency
 - Equation for equal-efficiency curves
 - If no solution
 - problem is not scalable in the sense defined by isoeficiency
- See original paper by Kumar on webpage
Scalability of Adding \(n \) Numbers

- Scalability of a parallel system is a measure of its capacity to increase speedup with more processors.
- Adding \(n \) numbers on \(p \) processors with strip partition:

 \[
 T_{par} = \frac{n}{p} - 1 + 2 \log p
 \]

 \[
 \text{Speedup} = \frac{n - 1}{\frac{n}{p} - 1 + 2 \log p}
 \approx \frac{n}{\frac{n}{p} + 2 \log p}
 \]

 \[
 \text{Efficiency} = \frac{S}{p} = \frac{n}{n + 2 p \log p}
 \]
Problem Size and Overhead

- Informally, problem size is expressed as a parameter of the input size.
- A consistent definition of the size of the problem is the total number of basic operations \(T_{seq} \).
 - Also refer to problem size as “work” \(W = T_{seq} \).
- Overhead of a parallel system is defined as the part of the time (cost) NOT in the best serial algorithm.
- Denoted by \(T_O \), it is a function of \(W \) and \(p \):
 \[
 T_O(W,p) = pT_{par} - W \quad (pT_{par} \text{ includes overhead})
 \]
 \[
 T_O(W,p) + W = pT_{par}
 \]
Isoefficiency Function

- With a fixed efficiency, W is a function of p

\[T_{par} = \frac{W + T_o(W, p)}{p} \quad \text{ Speedup } = \frac{W}{T_{par}} = \frac{Wp}{W + T_o(W, p)} \]

Efficiency

\[S = \frac{W}{p} \quad \frac{W}{W + T_o(W, p)} = \frac{1}{1 + \frac{T_o(W, p)}{W}} \]

\[E = \frac{1}{1 + \frac{T_o(W, p)}{W}} \rightarrow \frac{T_o(W, p)}{W} = \frac{1 - E}{E} \]

\[W = \frac{E}{1 - E} T_o(W, p) = KT_o(W, p) \quad \text{ Isoefficiency Function} \]
Isoefficiency Function of Adding n Numbers

- Overhead function:
 \[T_0(W,p) = pT_{par} - W = 2p\log(p) \]

- Isoefficiency function:
 \[W = K \cdot 2p\log(p) \]

- If \(p \) doubles, \(W \) needs also to be doubled to roughly maintain the same efficiency.

- Isoefficiency functions can be more difficult to express for more complex algorithms.

\[
T_{par} = \frac{n}{p} - 1 + 2\log p
\]

\[
\text{Speedup} = \frac{n - 1}{\frac{n}{p} - 1 + 2\log p}
\approx \frac{n}{\frac{n}{p} + 2\log p}
\]

\[
\text{Efficiency} = \frac{S}{p} = \frac{n}{n + 2p\log p}
\]
More Complex Isoefficiency Functions

- A typical overhead function T_O can have several distinct terms of different orders of magnitude with respect to both p and W
- We can balance W against each term of T_O and compute the respective isoefficiency functions for individual terms
 - Keep only the term that requires the highest grow rate with respect to p
 - This is the asymptotic isoefficiency function
Isoefficiency

- Consider a parallel system with an overhead function

\[T_o = p^{3/2} + p^{3/4}W^{3/4} \]

- Using only the first term

\[W = Kp^{3/2} \]

- Using only the second term

\[W = Kp^{3/4}W^{3/4} \]

\[W^{1/4} = Kp^{3/4} \]

\[W = K^4 p^3 \]

- \(K^4 p^3 \) is the overall asymptotic isoefficiency function
 - It is the dominant term
Parallel Computation (Machine) Models

- **PRAM (parallel RAM)**
 - Basic parallel machine

- **BSP (Bulk Synchronous Parallel)**
 - Isolates regions of computation from communication

- **LogP**
 - Used for studying distribute memory systems
 - Focuses on the interconnection network

- **Roofline**
 - Based in analyzing “feeds” and “speeds”
PRAM

- Parallel Random Access Machine (PRAM)
- Shared-memory multiprocessor model
- Unlimited number of processors
 - Unlimited local memory
 - Each processor knows its ID
- Unlimited shared memory
- Inputs/outputs are placed in shared memory
- Memory cells can store an arbitrarily large integer
- Each instruction takes unit time
- Instructions are synchronized across processors (SIMD)
PRAM Complexity Measures

- For each individual processor
 - *Time*: number of instructions executed
 - *Space*: number of memory cells accessed

- PRAM machine
 - *Time*: time taken by the longest running processor
 - *Hardware*: maximum number of active processors

- Technical issues
 - How processors are activated
 - How shared memory is accessed
Processor Activation

- P_0 places the number of processors (p) in the designated shared-memory cell
 - Each active P_i, where $i < p$, starts executing
 - $O(1)$ time to activate
 - All processors halt when P_0 halts

- Active processors explicitly activate additional processors via FORK instructions
 - Tree-like activation
 - $O(\log p)$ time to activate
PRAM is a Theoretical (Unfeasible) Model

- Interconnection network between processors and memory would require a very large amount of area.
- The message-routing on the interconnection network would require time proportional to network size.
- Algorithm’s designers can forget the communication problems and focus their attention on the parallel computation only.
- There exist algorithms simulating any PRAM algorithm on bounded degree networks.
- Design general algorithms for the PRAM model and simulate them on a feasible network.
Classification of PRAM Models

- **EREW** (Exclusive Read Exclusive Write)
 - No concurrent read/writes to the same memory location

- **CREW** (Concurrent Read Exclusive Write)
 - Multiple processors may read from the same global memory location in the same instruction step

- **ERCW** (Exclusive Read Concurrent Write)
 - Concurrent writes allowed

- **CRCW** (Concurrent Read Concurrent Write)
 - Concurrent reads and writes allowed

- **CRCW > (ERCW,CREW) > EREW**
CRCW PRAM Models

- COMMON: all processors concurrently writing into the same address must be writing the same value
- ARBITRARY: if multiple processors concurrently write to the address, one of the competing processors is randomly chosen and its value is written into the register
- PRIORITY: if multiple processors concurrently write to the address, the processor with the highest priority succeeds in writing its value to the memory location
- COMBINING: the value stored is some combination of the values written, e.g., sum, min, or max
- COMMON-CRCW model most often used
Complexity of PRAM Algorithms

<table>
<thead>
<tr>
<th>Problem</th>
<th>EREW</th>
<th>CRCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>List Ranking</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Prefix</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Tree Ranking</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Finding Minimum</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
BSP Overview

- Bulk Synchronous Parallelism
- A parallel programming model
- Invented by Leslie Valiant at Harvard
- Enables performance prediction
- SPMD (Single Program Multiple Data) style
- Supports both direct memory access and message passing semantics
- BSPlib is a BSP library implemented at Oxford
Components of BSP Computer

- A set of processor-memory pairs
- A communication point-to-point network
- A mechanism for efficient barrier synchronization of all processors
BSP Supersteps

- A BSP computation consists of a sequence of supersteps.
- In each superstep, processes execute computations using locally available data, and issue communication requests.
- Processes synchronized at the end of the superstep, at which all communications issued have been completed.
BSP Performance Model Parameters

- $p =$ number of processors
- $l =$ barrier latency, cost of achieving barrier synchronization
- $g =$ communication cost per word
- $s =$ processor speed
- $l, g, \text{ and } s$ are measured in FLOPS
- Any processor sends and receives at most h messages in a single superstep (called h-relation communication)
- Time for a superstep $= \max \text{ number of local operations performed by any one processor} + g \times h + l$
The LogP Model (Culler, Berkeley)

- **Processing**
 - Powerful microprocessor, large DRAM, cache => P

- **Communication**
 - Significant latency (100's of cycles) => L
 - Limited bandwidth (1 – 5% of memory) => g
 - Significant overhead (10's – 100's of cycles) => o
 - on both ends
 - no consensus on topology
 - should not exploit structure
 - Limited capacity

- No consensus on programming model
 - Should not enforce one
LogP

- **P** (processors)

- **L** (latency) in sending a (small) message between modules
- **O** (overhead) felt by the processor on sending or receiving message
- **G** (gap) between successive sends or receives (1/BW)
- **P** (processors)

Limited Volume \((L/g)\) to or from a processor
LogP "Philosophy"

Think about:
- Mapping of N words onto P processors
- Computation within a processor
 - its cost and balance
- Communication between processors
 - its cost and balance

Characterize processor and network performance

Do not think about what happens in the network

This should be enough
Typical Values for g and l

<table>
<thead>
<tr>
<th>Old parallel machines</th>
<th>p</th>
<th>g</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiprocessor Sun</td>
<td>2-4</td>
<td>3</td>
<td>50-100</td>
</tr>
<tr>
<td>SGI Origin 2000</td>
<td>2-8</td>
<td>10-15</td>
<td>1000-4000</td>
</tr>
<tr>
<td>IBM-SP2</td>
<td>2-8</td>
<td>10</td>
<td>2000-5000</td>
</tr>
<tr>
<td>NOW (Network of Workstations)</td>
<td>2-8</td>
<td>40</td>
<td>5000-20000</td>
</tr>
</tbody>
</table>
Parallel Programming

- To use a scalable parallel computer, you must be able to write parallel programs.
- You must understand the programming model and the programming languages, libraries, and systems software used to implement it.
- Unfortunately, parallel programming is not easy.
Parallel Programming: Are we having fun yet?
Parallel Programming Models

- Two general models of parallel program
 - Task parallel
 - problem is broken down into tasks to be performed
 - individual tasks are created and communicate to coordinate operations
 - Data parallel
 - problem is viewed as operations of parallel data
 - data distributed across processes and computed locally

- Characteristics of scalable parallel programs
 - Data domain decomposition to improve data locality
 - Communication and latency do not grow significantly
Shared Memory Parallel Programming

- Shared memory address space
- (Typically) easier to program
 - Implicit communication via (shared) data
 - Explicit synchronization to access data

Programming methodology
- Manual
 - multi-threading using standard thread libraries
- Automatic
 - parallelizing compilers
 - OpenMP parallelism directives
- Explicit threading (e.g. POSIX threads)
Distributed Memory Parallel Programming

- Distributed memory address space
- (Relatively) harder to program
 - Explicit data distribution
 - Explicit communication via messages
 - Explicit synchronization via messages
- Programming methodology
 - Message passing
 - plenty of libraries to chose from (MPI dominates)
 - send-receive, one-sided, active messages
 - Data parallelism
Parallel Programming: Still a Problem?
Parallel Computing and Scalability

- Scalability in parallel architecture
 - Processor numbers
 - Memory architecture
 - Interconnection network
 - Avoid critical architecture bottlenecks

- Scalability in computational problem
 - Problem size
 - Computational algorithms
 - computation to memory access ratio
 - computation to communication ratio

- Parallel programming models and tools

- Performance scalability
Parallel Performance and Complexity

- To use a scalable parallel computer well, you must write high-performance parallel programs.
- To get high-performance parallel programs, you must understand and optimize performance for the combination of programming model, algorithm, language, platform, ...
- Unfortunately, parallel performance measurement, analysis and optimization can be an easy process.
- Parallel performance is complex.
Parallel Performance Evaluation

- Study of performance in parallel systems
 - Models and behaviors
 - Evaluative techniques

- Evaluation methodologies
 - Analytical modeling and statistical modeling
 - Simulation-based modeling
 - Empirical measurement, analysis, and modeling

- Purposes
 - Planning
 - Diagnosis
 - Tuning
Parallel Performance Engineering and Productivity

- Scalable, optimized applications deliver HPC promise
- Optimization through *performance engineering* process
 - Understand performance complexity and inefficiencies
 - Tune application to run optimally on high-end machines
- How to make the process more effective and productive?
- What performance technology should be used?
 - Performance technology part of larger environment
 - Programmability, reusability, portability, robustness
 - Application development and optimization productivity
- Process, performance technology, and its use will change as parallel systems evolve
- Goal is to deliver effective performance with high productivity value now and in the future
Motivation

- Parallel / distributed systems are complex
 - Four layers
 - application
 - algorithm, data structures
 - parallel programming interface / middleware
 - compiler, parallel libraries, communication, synchronization
 - operating system
 - process and memory management, IO
 - hardware
 - CPU, memory, network
 - Mapping/interaction between different layers
Factors which determine a program's performance are complex, interrelated, and sometimes hidden.

Application related factors
- Algorithms, dataset sizes, task granularity, memory usage patterns, load balancing, I/O communication patterns.

Hardware related factors
- Processor architecture, memory hierarchy, I/O network.

Software related factors
- Operating system, compiler/preprocessor, communication protocols, libraries.
Utilization of Computational Resources

- Resources can be under-utilized or used inefficiently
 - Identifying these circumstances can give clues to where performance problems exist

- Resources may be “virtual”
 - Not actually a physical resource (e.g., thread, process)

- Performance analysis tools are essential to optimizing an application's performance
 - Can assist you in understanding what your program is "really doing"
 - May provide suggestions how program performance should be improved
Performance Analysis and Tuning: The Basics

- Most important goal of performance tuning is to reduce a program's wall clock execution time
 - Iterative process to optimize efficiency
 - Efficiency is a relationship of execution time

- So, where does the time go?

- Find your program's hot spots and eliminate the bottlenecks in them
 - **Hot spot**: an area of code within the program that uses a disproportionately high amount of processor time
 - **Bottleneck**: an area of code within the program that uses processor resources inefficiently and therefore causes unnecessary delays

- Understand what, where, and how time is being spent
Sequential Performance

- Sequential performance is all about:
 - How time is distributed
 - What resources are used where and when

- “Sequential” factors
 - Computation
 - choosing the right algorithm is important
 - compilers can help
 - Memory systems and cache and memory
 - more difficult to assess and determine effects
 - modeling can help
 - Input / output
Parallel Performance

- Parallel performance is about sequential performance AND parallel interactions
 - Sequential performance is the performance within each thread of execution
 - “Parallel” factors lead to overheads
 - concurrency (threading, processes)
 - interprocess communication (message passing)
 - synchronization (both explicit and implicit)
 - Parallel interactions also lead to parallelism inefficiency
 - load imbalances
Sequential Performance Tuning

- Sequential performance tuning is a time-driven process
- Find the thing that takes the most time and make it take less time (i.e., make it more efficient)
- May lead to program restructuring
 - Changes in data storage and structure
 - Rearrangement of tasks and operations
- May look for opportunities for better resource utilization
 - Cache management is a big one
 - Locality, locality, locality!
 - Virtual memory management may also pay off
- May look for opportunities for better processor usage
Parallel Performance Tuning

- In contrast to sequential performance tuning, parallel performance tuning might be described as conflict-driven or interaction-driven.

- Find the points of parallel interactions and determine the overheads associated with them.

- Overheads can be the cost of performing the interactions:
 - Transfer of data
 - Extra operations to implement coordination

- Overheads also include time spent waiting:
 - Lack of work
 - Waiting for dependency to be satisfied
Interesting Performance Phenomena

- Superlinear speedup
 - Speedup in parallel execution is greater than linear
 - $S_p > p$
 - How can this happen?

- Need to keep in mind the relationship of performance and resource usage

- Computation time (i.e., real work) is not simply a linear distribution to parallel threads of execution

- Resource utilization thresholds can lead to performance inflections
Parallel Performance Engineering Process

Implementation
 → Preparation
 ↓ Performance Analysis
 ↓ Program Tuning
 ↓ Production

Measurement
 → Refinement
 ↓ Analysis
 ↓ Ranking

Preparation
 ↓ Performance Analysis
 ↓ Program Tuning
 ↓ Production