Software Processes Part 2

• Process Models
• Choosing a Process
• Project workspaces/start

Software Processes

• Developed as a conceptual tool for organizing complex software developments
• Organize the work
• Address developmental risks
• Intended use (idealized)
 1. Model of development (what does or should occur)
 2. Guide to developers in what to produce and when to produce it
A “Waterfall” Model*

- Requirements Analysis
- Architecture
- Design
- Coding
- System Integration and Testing
- Deployment
- Maintenance and Evolution

As a guide: does not address common development risks
- What happens if requirements are wrong?
- If scheduling or budget is wrong?

Greater temporal distance between error and when it is corrected increases cost (long feedback loop)

Common Process Models

- Waterfall
- Prototyping
- Iterative
- Spiral
- Agile
Characteristic Model: Prototyping

- Waterfall variation
- First system versions are prototypes, either:
 - Interface
 - Functional
- Which waterfall risks does this try to address?

Characteristic Processes: The Iterative Model

- Process is viewed as a sequence of iterations
 - Essentially, a *series of waterfalls*
 - Each iteration builds on the previous one (e.g., adds requirements, design components, code features, tests)
 - Each iteration produces complete set of work products deliverable software
 - Customers provide feedback on each release
 - There is no “maintenance” phase – each version includes problem fixes as well as new features
Iterative Model

- Also called “incremental development”
- Addresses some common waterfall risks
 - Risk that software cannot be completed – build incremental subsets
 - Risk of building the wrong system – stakeholders have opportunities to see parts of the software at each increment
 - Each iteration provides checkpoint for feasibility, schedule, budget and others issues

Advantages of Incremental Development

- Customers get usable functionality earlier than with waterfall
- Early feedback improves likelihood of producing a product that satisfies customers
 - Reduces risk: e.g., if customers hate the product, find out before investing too much effort and money
- The quality of the final product is better
 - Core functionality is developed early and tested multiple times
 - Only a relatively small subset of functionality added in each release: easier to get it right and test it thoroughly
 - Detect design problems early and get a chance to redesign
Characteristic Processes: The Spiral Model

- Process viewed as repeating cycles of increasing scale
- Identify risks and determine (next set of) requirements
- Each cycle builds next version by extension, increasing scale each time

Spiral Model

determine goals

Risk evaluation and Mitigation

plan next phase

development
Spiral Model Characteristics

- Response to lack of explicit risk analysis and risk mitigation in “waterfall” process
- Includes risk analysis and mitigation activities at each phase (e.g., prototyping)
- Explicit Go/No-Go decision points in process
- “Heavy-weight” process: substantial overhead not contributing directly to end products

Characteristic Processes: Agile (e.g. scrum)

- Process viewed as nested sequence of builds (sprints)
 - Each build adds very small feature set (one or two)
 - Small team, daily meetings
 - Nightly build/test, frequent customer validation (preferably on site)
 - Focus on delivering code, little or no time spent on documentation
How do we Choose a Development Process?

E.g., for your projects

Objectives

- Goal: proceed as systematically as possible (i.e., in a controlled manner), from a statement of goals, to a design that demonstrably meets those goals within design and management constraints
 - Understand that any process description is an abstraction
 - Real developments must compensate for deviation from the ideal (e.g., by iteration, backtracking, etc.)
 - Still important to have a well-defined process to follow and measure against
Choosing a Process

• Question of control vs. cost: processes introduce overhead
• Choose a process to provide an appropriate level of control for the given product and context
 – Sufficient control to mitigate risks, achieve results
 – No more than necessary to contain cost and effort
• Provides a basis for choosing or evaluating processes, methods, etc.
 – Does it achieve our objectives at reasonable cost?
 – Does it address the most important developmental risks?
• To make a rational choice: need to agree on kind of control you need and how best to achieve it

Exercise: Which Model?
Exercise: Project Processes

• Discuss: Which process is the best fit for your projects and why?
• For each process you do not select: Which process characteristics do not fit well with our project?
• For the process selected
 – How do the process characteristics align with project needs?
 – How does it help address project risks?

Take-away

• Expected to know standard processes and their rationale
• Understand how and why people use different development models
• Understand how to choose an appropriate model for a given developments
 – Often poorly understood in industry
Project Preparation

Project Requirements
Assembla Worksites

Assignment: Project

- Goal: get clear on what you should build
 - Carefully review the Address Book requirements
 - Start creating a mock-up (on paper) of your application
 - Generate questions for instructor on detailed behavior
- Assembla: start drafting a project plan
 - Understand how to edit the Wiki pages
 - Identify team roles (even if they might change)
 - Lay out initial cut at your schedule (look at the class website Schedule page for deliverable due dates)
 - Create first meeting notes, developer logs
- For Monday: video lecture (link on Schedule page)
Questions?