1. chapter 4, exercise 27, pp 202-203

2. Given \(n \) pairs \((x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\) we want to find a polynomial \(A(x) \) such that, for all \(i \), \(A(x_i) = y_i \). As mentioned in class, Lagrange’s formula gives us a way to determine \(A \):

\[
A(x) = \sum_{k=0}^{n-1} y_k \prod_{j \neq k} (x - x_j) / \prod_{j \neq k} (x_k - x_j).
\]

Show how to compute \(A \) in time \(O(n^2) \).

3. chapter 5, exercise 3, pp 246-247

4. chapter 5, exercise 7, pp 248-249

Comments:

- The question for problem 2 is not to be able to evaluate \(A \) on an \(x \), but to determine the coefficients of \(A \). View the problem as taking input \((x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\) and returning as output \(a_n, a_{n-1}, \ldots, a_1, a_0 \).

- Also on problem 2, a base operation is integer multiplication and/or addition. That is, if \(x \) and \(y \) are integers, then \(x \cdot y \) and \(x + y \) are \(O(1) \). On the other hand, if \(p(x) \) is a polynomial of degree \(n \), presented by its \(n + 1 \) coefficients, and \(q(x) \) is a polynomial of degree \(m \), then computing \(r(x) = p(x) \cdot q(x) \) (that is, determine the \(n + m + 1 \) coefficients of \(r(x) \)) will take time \(O(n \cdot m) \) by the usual method.

- Finally for problem 2, if you look online you may see a reference to barycentric form. Don’t go there. Just explain in your own words and/or pseudo code.