Assignment 4 - Solution

1. Calculate Conditional Probabilities (20pts)

 a. \(P(\text{toothache}) = 0.2\)
 b. \(P(\text{catch}) = 0.34\)
 c. \(P(\text{toothache} | \text{catch}) = \frac{0.108 + 0.016}{0.108 + 0.072 + 0.016 + 0.144} = 0.3647\)
 d. \(P(\text{cavity} | \text{toothache} \lor \text{catch}) = \frac{0.108 + 0.012 + 0.072}{0.108 + 0.012 + 0.016 + 0.064 + 0.072 + 0.144} = 0.4615\)

2. Draw Bayesian Network with CPTs (20pts)

 a. [Diagram of Bayesian Network]

 b. Probability of drawing a coin randomly

<table>
<thead>
<tr>
<th></th>
<th>(P(\text{coin}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>b</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>c</td>
<td>(\frac{1}{3})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>b</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>c</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Using Bayes Rule,
\[P(C | 2H, 1T) = \frac{P(2H, 1T | C) P(C)}{P(2H, 1T)} \]

Since, \(P(C) \) is equal for all values of \(C \) and \(P(2H, 1T) \) is not dependent on \(C \), we can ignore them leading to

\[P(C | 2H, 1T) \propto P(2H, 1T | C) \]

Since \(X1, X2 \) and \(X3 \) are conditionally independent given \(C \), the RHS from above can be written as:

\[= P(H | C) P(H | C) P(T | C) \]

First calculate the probability to get head twice and tail once for each coin:

\[P(2H, 1T | a) = 3 \times (0.4 \times 0.4 \times 0.6) = 0.288 \]

\[P(2H, 1T | b) = 3 \times (0.5 \times 0.5 \times 0.5) = 0.375 \]

\[P(2H, 1T | c) = 3 \times (0.6 \times 0.6 \times 0.4) = 0.432 \]

Since each flip is an independent event, we multiply the probabilities of getting head twice and tail once. Also, we need to multiply the probability by 3, because there are 3 different sequences getting head twice and tail once. Therefore, coin \(c \) has the highest probability to get head twice and tail once.
3. Decision Tree Learning (60pts)

Step 1, Calculate Information Gain
{Alt: 0.0, Bar: 0.0, Fri: 0.0207, Pat: 0.5409, Price: 0.1957, Rain: 0.0, Res: 0.0207, Type: 0.0, Est: 0.2075}
Attribute Chosen: Pat

Step 2, Pat: None
All same class examples, result is No

Step 3, Pat: Some
All same class examples, result is Yes

Step 4, Pat: Full
Calculate information gain
{Alt: 0.1092, Bar: 0.0, Fri: 0.1092, Price: 0.2516, Rain: 0.1092, Res: 0.2516, Type: 0.2516, Est: 0.2516}
Attribute chosen: Est (there is tie among Price, Res, Type, and Est)

Step 5, Est: >60
All same class examples, result is No

Step 6, Est: 30-60
Calculate information gain
\{Alt: 0.0, Bar: 1.0, Fri: 1.0, Price: 0.0, Rain: 0.0, Res: 0.0, Type: 1.0\}
Attribute chosen: Bar (There is tie among Bar, Fri, and Type)

Step 7, Bar: No
All same class examples, result is No

Step 8, Bar: Yes
All same class examples, result is Yes

Step 9, Est: 10-30
Calculate information gain
\{Alt: 0.0, Bar: 1.0, Fri: 0.0, Price: 1.0, Rain: 0.0, Res: 1.0, Type: 1.0\}
Attribute chosen: Price (There is tie of Bar, Price, Res, and Type)

Step 10, Price: $
All same class examples, result is Yes

Step 11, Price: $$$
All same class examples, result is No

Step 12, Price: $$
no example, no branch

Step 13, Est: 0-10
no example, no branch