POCKET ENIGMA

This problem is based on the POCKET ENIGMA, a toy that is functionally equivalent to primitive military ciphering machines. The Pocket Enigma consists of a fixed outer circular disk, marked with the alphabet in clockwise order, and a replaceable inner rotor with 13 wires that pair up the letters for encryption/decryption.

The outer disk and two examples of inner rotors are shown on the reverse. The device is shown here with Rotor I in successive positions (see arrow) D, E.

The disk moves one notch clockwise before encrypting each letter of plaintext. Thus, with Rotor I starting in position D, “CIS” is encrypted to “APO”.

In this problem, you are given a ciphertext (encrypted message) that used an unknown rotor but are in possession of a “crib” (a segment of the source plaintext). Your job is to determine where the crib appeared in the plaintext.

The first line of the input specifies the number \(n \) of ciphertexts to follow. Each of the following \(n \) lines consists of two strings of capital letters, of maximum lengths 50 and 10, respectively, separated by a single space:

\[
\text{CIPHERTEXT \ CRIB}
\]

The \(n \) ciphertexts would all have been created with different inner rotors, and not those shown on the reverse.

For each input, output the number \(m \) if the crib starts at the \(m^{th} \) character, There will be always be just one feasible position.

\[
\text{(Sample I/O on reverse)}
\]