CIS 313 Intermediate Data Structures

Sample Proof of Correctness by Loop Invariant

We wish to prove the correctness of the following piece of code, which converts an integer \(n \) to its representation in binary \(b \):

```plaintext
input: integer \( n \geq 0 \)
output: integer \( k \), array \( b \) of \( k \) bits

convert_to_binary(n)  {
    -- initialization
    int \( k = 0 \)
    int \( t = n \)
    array \( b = [] \) of bit

    --loop
    while \( t > 0 \) do
        \( b[k] = (t \mod 2) \)
        \( k = k + 1 \)
        \( t = t \div 2 \)

    --end
    return \( b, k \)
}
```

An invariant \(\alpha \) for a general loop \(<\text{init}> \text{ while } \gamma \text{ do } \mathcal{L} \) must satisfy the following three properties:

(i) \((\text{initialization})\) \(\alpha \) is true after the initialization phase \(<\text{init}>\).

(ii) \((\text{maintenance})\) Suppose \(\gamma \) is true so that the loop can be entered. If \(\alpha \) is true, then after one execution of the body of the loop \(\mathcal{L} \), the invariant \(\alpha \) will still be true.

(iii) \((\text{termination})\) Eventually \(\neg \gamma \) will occur, so the loop will halt. The desired outcome is \(\neg \gamma \land \alpha \).

For \text{convert_to_binary}, the loop condition is clearly \(\gamma = "t > 0" \) and the loop invariant \(\alpha \) we will use is

- \(t \geq 0 \), and
- Let \(m = \sum_{i=0}^{k-1} b[i] \cdot 2^i \) be the number represented by \(b \). Then \(n = 2^k \cdot t + m \).

Let’s work through the three steps of the process of using a loop invariant.
(i) \textit{(initialization)} Initially, \(t = n \geq 0 \), so part 1 of \(\alpha \) holds. Also, \(k = 0 \) and \(b = [] \), so \(m = 0 \). Part 2 of \(\alpha \) holds now since \(2^k \cdot t + m = 2^0 \cdot n + 0 = n \).

(ii) \textit{(maintenance)} Suppose that both \(\gamma \) and \(\alpha \) are true. Then \(t > 0 \) and \(n = 2^k \cdot t + m \) (where \(m \) is defined as above). The new values of \(t, k, m \) we will call \(t', k', m' \), and clearly \(k' = k + 1 \). Also, \(t' = \lceil t/2 \rceil \).

We need to show that \(\alpha \) holds for these new values \(t', k', m' \). Part 1 of \(\alpha \) is easy: \(t > 0 \) so \(t' = \lceil t/2 \rceil \geq 0 \). For part 2, it remains to show that \(n = 2^k' \cdot t' + m' \) There are two cases, depending on whether \(t \) is even or odd.

\(t \text{ is even} \) Here \(b[k] = 0 \), \(m' = m \), and \(t' = \frac{t}{2} \). Now

\[2^{k'} \cdot t' + m' = 2^{k+1} \cdot \frac{t}{2} + m = 2^k \cdot t + m = n \]

(the last step follows by hypothesis) and part 2 is true.

\(t \text{ is odd} \) In this case \(b[k] = 1 \), \(m' = 2^k + m \), and \(t' = \frac{t - 1}{2} \). Substituting as above,

\[2^{k'} \cdot t' + m' = 2^{k+1} \cdot \frac{t - 1}{2} + (2^k + m) = 2^k \cdot t - 2^k + (2^k + m) = 2^k \cdot t + m = n \]

and again part 2 of \(\alpha \) holds.

(iii) \textit{(termination)}

The loop terminates, since \(t > \lceil t/2 \rceil \).

At termination, both \(\alpha \) and \(\neg \gamma \) are true. Part 1 of \(\alpha \) tells us that \(t \geq 0 \) while \(\neg \gamma \) says that \(t \leq 0 \). From these we get \(t = 0 \).

Now let’s look at part 2 of \(\alpha \) at termination. Remember that \(m = \sum_{i=0}^{k-1} b[i] \cdot 2^i \) is the number represented by the bits stored in the array \(b \). Part 2 says that \(n = 2^k \cdot t + m \). But we know that \(t = 0 \), so \(n = m \). That is what we wanted to prove, namely that \(b \) stores the binary representation of the number \(n \).