CIS 313

week of Oct 15

fourth week of the term
binomial trees

• a *binomial heap* will be a collection of binomial trees with the heap property

• so we need to define a *binomial tree* first

• a binomial tree is defined recursively:
 • a B_0 tree is a single node (height 0)
 • a B_k tree consist of a B_{k-1} tree whose root has another B_{k-1} tree as a child

• a B_k tree contains 2^k nodes

• the number of nodes on level j of a B_k tree is the binomial coefficient $\binom{k}{j}$
these trees will be represented using the first-child next sibling representation of ordered trees
binomial heap

- collection of binomial trees
- values stored in the nodes satisfy heap property
- min value could be at root of one of the trees
- if \(n \) nodes stored, then \(\lg n \) trees used, corresponds to binary representation of \(n \)
- example: if \(n=13 \), need \(B_0, B_2, B_3 \) trees (containing 1, 4, 8 nodes)
- \(...n=13=(1101)_2 \) in base 2
example

- $n=13=(1101)_2$
- A B_0, B_2, and B_3 tree

source:
https://en.wikipedia.org/wiki/Binomial_heap
merge two B_k trees

- two B_k trees can be merged into a B_{k+1} tree
- look at the two roots ...
- ... the root with larger value becomes child of root with smaller value
- easy since children of root given in linked list
- result is B_{k+1} tree
main operation: union of two binomial heaps

- two heaps of sizes n and m can be merged in time $O(\lg n + \lg m)$
- idea is simple:
 - for $k=0, 1, 2, \ldots$
 - scan through each heap’s tree list
 - if there are two B_k trees, merge them together into a B_{k+1} tree
 - (*note 1*: one of the B_k trees might be the result of an earlier merge)
 - (*note 2*: there might be three B_k trees, one each from the two heaps and one from an earlier merge – pick any two of them – similar to a carry bit)
- operation parallels closely addition in binary
example union

\[\begin{align*}
1011 \\
+ \quad 0011 \\
\hline
1110
\end{align*} \]

\[\begin{align*}
11 \\
+ \quad 3 \\
\hline
14
\end{align*} \]
other operations “reduce” to union

• insertion:
 • to insert x into heap H
 • create heap H’ consisting of only x
 • perform union of H and H’

• time $O(\log n)$
 • actually not so bad if many insertions performed
 • a sequence of n insertions into an initially empty heap uses $O(n)$ time
 • similar: n increments (by one) of a binary counter (initially zero) makes $O(n)$ bit flips
 • analysis: we saw something like $\sum_{i=0}^{\log n} i2^i = O(n)$ with the BuildHeap routine
extract-min

• the min is the root of one of the trees in the binomial heap H
• suppose it’s a B_k tree with root x
 • pull the tree with root x out of H
 • the children of x form a binomial heap H'
 • (H' will have one each of a B_0, B_1, $..., B_{k-1}$ tree)
 • perform a union H' and the reminder of H
 • return key of x

• $O(\lg n)$ time
1 is the min of H

pull out the tree with 1 as root

remove 1 and look at its child list as heap H’

get union of H’ with remaining heap H
lazy binomial heaps

- can make insert and union LAZY
 - to perform union of two heaps, just concatenate the tree lists
 - keep pointer to min element
 - may have many B_k trees for some k
- only merge B_k trees into B_{k+1} trees when necessary
- extractMin
 - need to scan list to look for new min
 - perform COALESCE operation: for $k=0, 1, 2, ...$ as long as there are at least two B_k trees, merge them
 - might be $O(n)$ time, but can show that is very rare
- good *amortized* behavior
- leads into FIBONACCI heaps
binary search trees

• chapter 12
• we will look at
 • definitions
 • properties
 • operations: insert, delete, search
 • traversals: inorder, postorder, preorder, level order
 • worst case behavior
 • average case behavior
• then move onto self-balancing BSTs: red-black, 2-3, 2-3-4, ...
various trees

- free tree
- rooted tree
- ordered tree
- binary tree
- binary search tree
 - (search property) let x be a node in a BST. If y is a node in the left subtree of x, then \(y.key \leq x.key \). If y is in the right subtree of x, then \(y.key \geq x.key \)
assorted facts and definitions

• any tree with n nodes has n-1 edges
• a binary tree with left/right pointers and n nodes has n+1 null pointers
• a full binary tree with n internal nodes has n+1 external nodes
• full binary tree: all nodes have either 2 children (the internal nodes) or 0 children (external)
• a binary tree of n nodes has height at least \(\lg n \) and at most n-1
• height = distance of node from bottom, depth = distance from top
facts, defs cont’d

• internal path length (I): sum of the depths of all the nodes
• external path length (E): sum of the depths of the nulls (externals)
• fact: E = I + 2n (nice exercise)
• I corresponds to successful search in BST, average search time is \(1 + \frac{l}{n} \)
• E corresponds to unsuccessful search, average failed search time is \(E/(n+1) \)
• worst case tree: skew tree (every node has just one child)
sample BST
BST operations

- find(x)
- insert(x): find a null and put it there
- successor(x)
 - successor(10)=11, successor(15)=17
 - algorithm?
 - if x has right child, go right once, then left until end
 - otherwise, follow parent links until “right” turn
- delete(x): how?
 - if 0 children, remove
 - if 1 child, splice out
 - if 2 children, replace with successor value, then remove successor node
walks

• inorder
 • 1 3 4 5 7 8 9 10 11 12 13 15 17 18 20 23

• preorder
 • 12 10 5 3 1 4 8 7 9 11 17 13 15 20 18 23

• postorder
 • 1 4 3 7 9 8 5 11 10 15 13 18 23 20 17 12
randomly built BST

• we have n values and will insert them one-by-one into a BST
• what will that BST look like?
• there are n! permutations of the input
 • we assume each one equally likely
• how many BST shapes can there be?
 • Catalan number, which is \(\frac{1}{n+1} \binom{2n}{n} = \Omega \left(\frac{4^n}{n^2} \right) \)
 • (hard!)
counting permutations for a tree

• given a tree shape T we can determine the number of permutations which, if inserted into empty BST, would end up with that tree
• build up number bottom up
• at node x, suppose left subtree of x has n nodes and is generated by r permutations, and
• right subtree has m nodes and is generated by s permutations
• the the subtree rooted at x
 • has n+m+1 nodes
 • is generated by \(\binom{n+m}{n} \cdot r \cdot s \) permutations
example

- left side generated by 1 permutation: 13 15
- right side by two
 - 20 18 23
 - 20 23 18
- for full tree, pick one permutation each for the left and right sides
- permutation for the whole tree must start with 17 followed by n+m = 2+3 = 5 spaces
 - 17 __ __ __ __ __
- choose two for them for the left tree, which can be done in \(\binom{5}{2} = 10 \) ways
- example: 2nd and 5th positions
- 17 __ 13 __ __ 15
- either of the two remaining perms can go in remaining three slots
 - 17 20 13 18 23 15
 - 17 20 13 23 18 15
- total number of permutations for whole tree:

\[
1 \cdot 2 \cdot \binom{5}{2} = 20
\]

intuition: balanced trees more “likely”
back to sorting theme

• we can build an abstract sort method based on BST
• given unsorted list, insert all values into empty BST
• perform inorder walk

```
BST SORT
** input list a=(a₁,a₂,...,aₙ)
create BST T

for i=1 to n
    T.insert(aᵢ)

perform T.inorder
    when visiting a node, store value in list b

return b
```

this part is O(n)
expected behavior

• if list a is chosen randomly from among all n! permutations
• how long does “for i=1 to n T.insert(a_i)” take?
• worst case: O(n^2)
• want to argue: on average O(n lg n)

• main fact: expected search time (1+1/n) in BST built from randomly chosen permutation is 2 \cdot \ln(n + 1) + O(1) \approx 1.38 \log_2 n + O(1)
describe a binary search tree on n nodes such that the average depth of a node in the tree is \(\Theta(\lg n) \) but the height of the tree is \(\omega(\lg n) \)