CIS 313

week of Oct 8

third week of the term
priority queues

• chapter 6
• abstract operations (implementation independent)
• maintains a set S of elements
• operations
 • insert(x)
 • max (or returnMax)
 • extractMax (removes it)
 • increaseKey(x,k) (set key of x to a new larger value)
 • -OR- insert, min, extractMin, decreaseKey
can sort with priority queue

```plaintext
PQSort(array A)
//array A has n elements
create PQ Q
for i=1 to n
    Q.insert(A[i])
for i = n down to 1
    A[i] = Q.extractMax
```

cannot analyze time without implementation
unordered list implementation of PQ

• simple
• insert(x) is $O(1)$
• extractMax is $O(n)$
• What does PQSort look like?
 • selection sort
 • time $O(n^2)$, work done in second loop
ordered list implementation of PA

• also simple
• insert(x) is $O(n)$
• extractMax is $O(1)$
• What does PQSort look like?
 • insertion sort
 • time $O(n^2)$, work done in first loop
binary heap implementation of PQ

- most common implementation
- operations are $O(\log n)$
- uses a binary tree structure
- except that the tree is stored in an array with no pointers
- it is an *implicit* tree, children and parents inferred from location in array

- PQSort becomes *heapsort*
binary heap

• stored in array
• item located in position i
 • parent in location $\lfloor i/2 \rfloor$
 • left child in position $2i$
 • right child in position $2i + 1$
• tree is complete
 • all nodes have two children, except maybe parent of “last” one
• tree maintains heap property
 • value stored at location i is greater than or equal to values stored in both its children

height of tree is $O(lg n)$
binary heap insertion

• put new value x at end of array, extending its size by 1
• value x is now viewed as being at the bottom of the tree
• if x violates heap property (if larger than parent), swap with parent
• repeat until no violation
• time is proportional to height of tree, which is $O(lg n)$

• text handles this differently, they insert $-\infty$ and then use heap-increase-key to the new value
pseudo-code for insert

```plaintext
insert(x):

heapsize++
A[heapsize] = x

i = heapsize
while i > 1 and A[i] > A[parent(i)]
    swap A[i] and A[parent(i)]
    i = parent(i)
```

sometimes called “sift-up” or “bubble-up”
Binary Heap: Insert Operation

16

2 3
11 12
4 5 6 7
8 10 9 14

viewed as a binary tree

1 2 3 4 5 6 7
16 11 12 8 10 9 14

viewed as an array

1 2 3 4 5 6 7
16 11 14 8 10 9 12

viewed as an array
heap extract-max (deletion)

• similar but element moves down
• idea: remove and return root (in location 1 of the tree)
• move rightmost element into that empty location ...
• ... and reduce the heapsize
• tree shape is maintained but root location may violate heap property
• note: rest of tree still has heap property
• swap node with larger (why) of it’s children
• repeat while heap property violated until leaf hit
• called “sift-down” or “bubble-down”
Max-Heapify(A, i)

// Input: A: an array where the left and right children of i root heaps (but i may not), i: an array index
// Output: A modified so that i roots a heap
// Running Time: O(log n) where n = heap-size[A] - i
1 l ← LEFT(i)
2 r ← RIGHT(i)
4 largest ← l
5 else largest ← i
7 largest ← r
8 if largest ≠ i
9 exchange A[i] and A[largest]
10 Max-Heapify(A, largest)
first attempt at sorting

1. for each element x, \textit{insert} x into a heap
 - time per insert $O(lg\ n)$, total $O(n\ lg\ n)$
 - this can be made much faster

2. while the heap is not empty, \textit{extract-max}
 - output is a sorted list (reversed)
 - each extract-max is $O(lg\ n)$, total $O(n\ lg\ n)$
 - cannot be made faster

\textbf{BUILDHEAP} uses deletion idea to get linear overall time
buildheap code

```plaintext
BUILD-MAX-HEAP(A)
    // Input: A: an (unsorted) array
    // Output: A modified to represent a heap.
    // Running Time: O(n) where n = length[A]
1  heap-size[A] ← length[A]
2  for i ← ⌈length[A]/2⌉ downto 1
3       MAX-HEAPIFY(A, i)
```

correctness
- idea sort of clear, build heaps bottom up
- text uses loop invariant!!

time analysis
if tree has height $H=\log n$
- all nodes at level k take time $H-k$ to sift down
- there are 2^k nodes at level k
- total time is $\sum_{0}^{H} 2^k (H - k)$
- can show this is at most $2n$
grinding through the time bound

\[\sum_{k=0}^{H} 2^k (H - k) = 2^H \sum_{k=0}^{H} \frac{2^k}{2^H} (H - k) \]

\[= n \cdot \sum_{k=0}^{H} \frac{1}{2^{2H-k}} (H - k) \]

\[= n \cdot \sum_{i=0}^{H} \frac{i}{2^i} \leq n \cdot \sum_{i=0}^{\infty} \frac{i}{2^i} = 2 \cdot n \]

\[2^H \approx 2^{\log_2 n} = n \]

why just 2?
• mentioned but not proved in appendix
• “fun” to derive
• can also take derivative of \(\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \)
Heap-Sort(A)

// Input: A: an (unsorted) array
// Output: A modified to be sorted from smallest to largest
// Running Time: $O(n \log n)$ where $n = \text{length}[A]$

1 Build-Max-Heap(A)
2 for $i = \text{length}[A]$ downto 2
3 exchange $A[1]$ and $A[i]$
4 $\text{heap-size}[A] \leftarrow \text{heap-size}[A] - 1$
5 Max-Heapify($A, 1$

step 1: $\Theta(n)$ time

steps 2-5: $\Theta(n \log n)$ time

now heapsort
other heap operation: increase-key

• an item can be increased in $O(lg n)$ time
• after the increase, it would need to be sifted up as in the insert method
• the same applies to the decrease-key operation in a min heap
• this operation is a crucial step in Dijkstra’s method (shortest path) and Prim’s method (minimum spanning tree)
• it can be implemented in $O(1)$ amortized time using Fibonacci heaps

• we will not cover Fibonacci heaps, but next we look at a similar and simpler structure: binomial heaps
small digression: ordered trees

ordered tree:
- tree has designated root
- a node can have any number of children
- if a node has k children, they are ordered
 - 1st child, 2nd child, ..., kth child
- good representation involves two pointers per node:
 - first child and next-sibling
 - so the children of a node are in a linked list
binomial trees

- A *binomial heap* will be a collection of binomial trees with the heap property.
- So we need to define a *binomial tree* first.
- A binomial tree is defined recursively:
 - A B_0 tree is a single node (height 0).
 - A B_k tree consists of a B_{k-1} tree whose root has another B_{k-1} tree as a child.

- A B_k tree contains $2k$ nodes.
- The number of nodes on level j of a B_k tree is the binomial coefficient $\binom{k}{j}$.
these trees will be represented using the first-child next sibling representation of ordered trees
binomial heap

- collection of binomial trees
- values stored in the nodes satisfy heap property
- min value could be at root of one of the trees
- if \(n \) nodes stored, then \(\lg n \) trees used, corresponds to binary representation of \(n \)
- example: if \(n=13 \), need \(B_0, B_2, B_3 \) trees (containing 1, 4, 8 nodes)
- \(...n=13=(1101)_2 \) in base 2