CIS 313

week of Oct 1

second week of the term
algorithm time bounds

Let \mathcal{A} be some algorithm operating on an input x

• worst case
 • \mathcal{A} has worst case time $O(t(n))$ if there are constants c and N such that for all $n>N$ and all inputs x of length n, \mathcal{A} completes its computation on input x using at most $c*t(n)$ steps
 • \mathcal{A} has worst case time $\Omega(t(n))$ if there are constants c and N such that for all $n>N$ there exists an input x of length n such that \mathcal{A} uses at least $c*t(n)$ steps to finish its computation on x

• average case
• expected case (a measure that makes sense if algorithm is randomized)
• best case (not very useful – why?)
• smoothed analysis (complicated)
linear data structures

Our basic structures: quick review

- arrays
- linked lists
- stacks
- queues
- hash tables
stacks

- LIFO: last-in first-out
- can implement stack with array, linked list, ...
- uses of stack
 - implement recursion
 - expression evaluation
 - depth-first search
- stack operations
 - push
 - pop
 - top (or peek)
 - init, isEmpty, isFull
example use of stack: evaluate postfix

postfix: operator after the operands
- (2+3)*7 becomes 2 3 + 7 *
- 2+(3*7) is 2 3 7 * +
- no need for parens

to evaluate a postfix expression E:

use operand stack S

for each token x in E, scanning L to R
 if x is operand (value)
 S.push(x)
 else x is operator (+, *, -, ...)
 v=S.pop
 w=S.pop
 z = result of applying operator x to (w,v)
 S.push(z)

return S.pop

note: if try to pop on empty stack, then underflow error
and if stack not empty after last pop then overflow error
queues

• FIFO: first-in, first-out
• useful in job scheduling, models “standing in line”
• implementation: linked list, array (wraparound)
• use to compute breath-first search of tree, graph
• operations
 • enqueue
 • dequeue
 • front, isEmpty, isFull
example with tree: stack vs queue

Consider a tree T consisting of simple nodes p: fields p.$left$, p.$right$, and p.$value$

We have a simple recursive preorder traversal whose initial call is $\text{preorderTrav}(T$.$\text{root})$

```
preorderTrav(node p)
    print p$\text{.value}$
    if p$\text{.left} \neq \text{null}$
    \quad preorderTrav(p$\text{.left}$)
    if p$\text{.right} \neq \text{null}$
    \quad preorderTrav(p$\text{.right}$)
```
example with tree (cont’d)

preorder traversal:
A B D I J F C G K H

note
inorder: I D J B F A G K C H
postorder: I J D F B K G H C A
example with tree (cont’d)

implement that traversal with a stack:

stack S of node

S.push(T.root)

while (not S.isEmpty)
 p = S.pop
 print p.value
 if p.right!=null
 S.push(p.right)
 if p.left!=null
 S.push(p.left)

note: need to push the right side first so left side gets visited before it

step through traversal with tree on previous slide
example with tree (cont’d)

Implement that traversal with a stack:

queue \(Q \) of node

\(Q.enqueue(T.root) \)

while (not \(Q.isEmpty \))

\(p = Q.dequeue \)

print \(p.value \)

if \(p.right \neq \) null

\(Q.enqueue(p.right) \)

if \(p.left \neq \) null

\(Q.enqueue(p.left) \)

what order do we get with this method?

try example
example with tree (conclusion)

previous queue algorithm gives a (reverse) level-order:

A C B H G F D K J I
	nice, somewhat unrelated question,

Reconstruct a binary tree from two of the traversal sequences

eexample: you are given only

A B D I J F C G K H (preorder)
I D J B F A G K C H (inorder)

now build the tree
hash tables

• chapter 11
• store n items in a table T of size m
• hash function h determines where to put an item
• issues
 • what to do when two items hash to same location (collision)
 • how to choose good hash function h (minimize collisions)
 • how to choose table size m
 • dynamically increase table size
 • important in databases but not addressed here
collision resolution

• what to do with two items x and y that hash to same location?
 • \(h(x.key) = h(y.key) \)

• open addressing
 • look at other locations in the table
 • table might overflow
 • more complicated

• closed addressing
 • all items that hash to location t stay there in some structure
 • bucket, linked list, ...
chaining

• first: simple version of chaining
• table T with m slots, each containing a linked list
• hash function h maps keys to \{0, 1, ..., m-1\}
• insert(T, x): put x in a node at the head of T(h(x.key))
• load factor: \(\alpha = n/m \), where T contains n items
• goal: access time should be \(1 + \Theta(\alpha) \)
• also called *closed addressing* (since item stored at that location)
choosing a hash function

• let k be the key and T a table of size m
• want h(k) to distribute keys uniformly across locations \{0,1,\ldots,m-1\}
• division method: \(h(k) = k \mod m \)
 • choice of table size m important
 • if \(m=2^p \), then only low order bits of k matter
 • if k not distributed well, then h(k) prone to be biased
 • best if m a prime
multiplication method

• pick constant A with 0<A<1
• \(h(k) = \lfloor m \cdot ((k \cdot A) \mod 1) \rfloor \) (here “mod 1” means fractional part of real number)
• Knuth suggests \(A = \frac{\sqrt{5} - 1}{2} \approx 0.6180339 \ldots \)
• nice example on p 264 of text
universal hashing

• family of hash functions \mathcal{H}, maps key universe U onto $\{0, 1, \ldots, m-1\}$
• want for any $k, l \in U$ that the number of $h \in \mathcal{H}$ such that $h(k) = h(l)$ is at most $|\mathcal{H}|/m$
• idea is to pick an $h \in \mathcal{H}$ randomly if possible
• intuitively if keys $k \in U$ not distributed well a random $h \in \mathcal{H}$ will still distribute the locations well and excess avoid collision
• example family: \mathcal{H} will depend on fixed p, m
 • m is table size, $p>m$ is a prime so that all keys $k<p$
 • choose a, b with $0<a<p$, $b<p$ (randomly)
 • $h(k) = ((ak+b) \mod p) \mod m$
 • many details in text, depends on basic number theory
back to collision resolution: open addressing

• for key k=x.key, if location T[h(k)] is full (via collision), need to put x in a different location

• look in a sequence of locations, this is called the *probe sequence*

• sometimes write h<k,i> for location of probe i on key k

• look in locations h<k,0>, h<k,1>, h<k,2>, ... until find empty slot in which to place x

• simplest (and worst): *linear probing*
 • h<k,i> = (h(k)+i) mod m
 • that is, if h(k) is full, look in locations h(k)+1, h(k)+2, h(k)+3, ...
better probe sequences

• quadratic probing
 • pick constants c, d
 • $h_{k,i} = (h(k) + c*i + d*i^2) \mod m$
 • c, d, m need to be chosen carefully so that $h_{k,i}$ can probe entire table

• double hashing
 • use two hash functions h_1, h_2
 • $h_{k,i} = (h_1(k) + i*h_2(k)) \mod m$
 • need m and $h_2(k)$ to be relatively prime
other uses of hash functions

• database indexing
 • need extendible hash tables as many insertions happen
 • not good for range queries (“find all values between a and b”)
 • B-tree indexes more popular

• cryptographically secure hashing
 • password files
 • multi-party communication
 • hash functions very different looking

• Bloom filters, count-min sketch
count-min sketch

• problem: count events in a data-stream, many possible events, want number of occurrences of each event
• conventional data structure too large
• count-min sketch is probabilistic structure, uses sub-linear space
• idea: table size of \(w \) columns and \(d \) rows
• each row \(j \) associates with hash function \(h_j \) mapping to \{0,1,...,w-1\}
• when event \(e \) occurs, increment location \([j,h_j(e)]\)
• estimate of number of occurrences of \(a \) is the min of all locations \([j,h_j(e)]\)
count-min sketch (cont’d)

Algorithm 1 Count-Min Sketch

```
insert(x):
    for i = 1 to d do
        M[i, h_i(x)] ← M[i, h_i(x)] + 1
    end for

query(x):
    c = min \{M[i, h_i(x)] for all 1 ≤ i ≤ d\}
    return c
```