CIS 313

week of Nov 26

tenth week of the term
linear time sorts

• Counting sort, Radix sort
• for Counting sort, we sort n elements, each in the range 0 to k (k fixed)
 • sometimes k=n
 • use element as array index
• simple version: count the number of items with value i, for $0 \leq i \leq k$
• use i as index to an array C
• then for each i print C[i] copies of i
• problem: i may be a key to larger element, need associated info
Counting-Sort (A, B, k)

1. let $C[0..k]$ be a new array
2. for $i = 0$ to k
 3. $C[i] = 0$
4. for $j = 1$ to $A.length$
 6. // $C[i]$ now contains the number of elements equal to i.
5. for $i = 1$ to k
 6. $C[i] = C[i] + C[i - 1]$
 7. // $C[i]$ now contains the number of elements less than or equal to i.
8. for $j = A.length$ downto 1
example run: n=8, k=5

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

C[i] contains the number of elements i

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

C[i] now contains the number of elements <= i

next 3 goes into location 6
radix sort

• sort on last digit (use *stable sort*)
• sort on next to last digit, etc
• old punch card readers did this

• if you have 100 bins, can sort on last two digits
• put into bins 0,1,2,...,99
RADIX-SORT(A, d)
 for i = 1 to d
 use stable sort to sort array A on digit i

Here each element of A has d digits
 • digit 1 lowest order
 • digit d highest order

Lemma 8.3
Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these numbers in $O(d(n+k))$ time if the stable sort it uses takes $O(n+k)$ time.
Lemma 8.4
Given n b-bit numbers and any positive integer $r \leq b$, RADIX-SORT correctly sorts these numbers in $O((b/r)(n+2^r))$ time if the stable sort it uses takes time $O(n+k)$ time for inputs in the range 0 to k.

Idea:
- break numbers into groups of r bits
- view it as consisting of b/r digits of r bits each
- each digit has value 0 to 2^r
- sort on each digit is $O(n+2^r)$
- done b/r times
1. Consider the use of lemma 8.4 of the text (p 199) to sort \(n \) numbers of \(b \) bits each. Suppose we choose \(b = \log n \log \log n \).

(a) What is the largest integer that can be expressed (in unsigned binary) using \(b \) bits?
(b) If \(r \) is chosen to be \(\log n \), how long does RADIXSORT take, according to the lemma?
(c) How long does it take if \(r = \log \log n \) is chosen instead?
(d) Which choice of \(r \) is faster?
order statistics

• we say an element of an array A has rank k if k-1 elements of A are \(\leq k \)
• one way to find an element of rank k is to sort A, then look in location k
• thus, to find the median
 • sort A
 • return element in location \(n/2 \)
• but that takes time \(O(n \ lg n) \)
• we want to do it faster: linear or almost linear time
revisit partition

- partition puts small elements (low rank) on the left
- large elements (high rank) on the right
what partition does

the sizes of the left and right sides depend on the value of x
Randomized-Select(A,p,r,i)
1. if p==r
2. return A[p]
3. q = Randomized-Partition(A,p,r)
4. k = q-p+1
5. if i==k //pivot is answer
6. return A[q]
7. else if i<k
8. return Randomized-Select(A,p,q-1,i)
9. else return Randomized-Select(A,q+1,r,i-k)

time:
O(n^2) worst case (low probability)
O(n lg n) expected time