CIS 313
week of Sep 24
themes

• computational complexity, start to measure it
• simple data structures (mostly review)
• tree based structures
 • binary trees
 • binary heaps, binomial heaps
 • self adjusting trees: AVL, Red-Black
 • (2,4) trees, B-trees
• sorting, order statistics, voting
famous author
Muhammad ibn Musa al-Khwarizmi (780-850)

wrote a math book
The Compendious Book on Calculation by Completion and Balancing

original title
Al-kitāb al-mukhtaṣar fī ḥisāb al-ğabr wa’l-muqābala

from the town of Khorazm (now Khiva)
relevance? new words!

famous author
Muhammad ibn Musa al-Khwarizmi

original title
Al-kitāb al-mukhtaṣar fī ḥisāb al-ğabr wa’l-muqābala
<table>
<thead>
<tr>
<th>Algorithm Speed</th>
<th>Input Size</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>…</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td></td>
<td>10^{-5} seconds</td>
<td>2 \cdot 10^{-5} seconds</td>
<td>3 \cdot 10^{-5} seconds</td>
<td>4 \cdot 10^{-5} seconds</td>
<td>5 \cdot 10^{-5} seconds</td>
<td>6 \cdot 10^{-5} seconds</td>
<td>(10^{-4}) seconds</td>
<td></td>
</tr>
<tr>
<td>(n^2)</td>
<td></td>
<td>10^{-4} seconds</td>
<td>4 \cdot 10^{-4} seconds</td>
<td>9 \cdot 10^{-4} seconds</td>
<td>1.6 \cdot 10^{-3} seconds</td>
<td>2.5 \cdot 10^{-3} seconds</td>
<td>3.6 \cdot 10^{-3} seconds</td>
<td>.01 second</td>
<td></td>
</tr>
<tr>
<td>(n^3)</td>
<td></td>
<td>10^{-3} seconds</td>
<td>8 \cdot 10^{-3} seconds</td>
<td>2.7 \cdot 10^{-3} seconds</td>
<td>6.4 \cdot 10^{-2} seconds</td>
<td>.125 second</td>
<td>.216 second</td>
<td>1 second</td>
<td></td>
</tr>
<tr>
<td>(n^{10})</td>
<td></td>
<td>2.7 hours</td>
<td>118 days</td>
<td>18 years</td>
<td>333 years</td>
<td>3,103 years</td>
<td>19,213 years</td>
<td>31,775 centuries</td>
<td></td>
</tr>
<tr>
<td>(2^n)</td>
<td></td>
<td>10^{-3} seconds</td>
<td>1 second</td>
<td>17 minutes</td>
<td>12 days</td>
<td>35.7 years</td>
<td>36,634 years</td>
<td>4 \cdot 10^{14} centuries</td>
<td></td>
</tr>
<tr>
<td>(3^n)</td>
<td></td>
<td>.06 second</td>
<td>58 minutes</td>
<td>6.5 years</td>
<td>3863 centuries</td>
<td>2 \cdot 10^8 centuries</td>
<td>1.3 \cdot 10^{13} centuries</td>
<td>1.6 \cdot 10^{32} centuries</td>
<td></td>
</tr>
<tr>
<td>(n!)</td>
<td></td>
<td>3.6 seconds</td>
<td>773 centuries</td>
<td>8 \cdot 10^{16} centuries</td>
<td>2.6 \cdot 10^{32} centuries</td>
<td>9.7 \cdot 10^{48} centuries</td>
<td>2.6 \cdot 10^{66} centuries</td>
<td>3 \cdot 10^{142} centuries</td>
<td></td>
</tr>
<tr>
<td>(2^{2n})</td>
<td></td>
<td>>10^{292} centuries</td>
<td>>10^{315637} centuries</td>
<td>ouch!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time spent at 1,000,000 operations per second:
how do we talk about algorithm speed?

• **big-oh notation**
• ignore constants
 • why? machine independence, constants not important *asymptotically*
 • asymptotically = “in the long run”
• see description and definitions in text (section 3.1, pp 43-52)
• $O, \Omega, \Theta, o, \omega$ *(sorry for poor typesetting)*
• $O, \Omega, \Theta, o, \omega$ *(that’s better)*
big-Oh formally

\[
f(n) = O(g(n)) \text{ if and only if (iff)} \\
\exists c \exists N \forall n \geq N \quad f(n) \leq c \cdot g(n)
\]

- \(c \) is the dropped constant
- \(N \) is the crossover point so that ...
- ... if \(n \) is big enough \(f \) is bounded above by \(c \cdot g \)
- the growth rate of \(g \) bounds the growth rate of \(f \) from above

example: let \(f(n) = 3n^3 + 5n^2 + n + 17 \)

some true statements:
- \(f(n) = O(n^3) \)
- \(f(n) = O(n^4) \)
- \(f(n) = O(17n^3) \)
- \(f(n) = 3n^3 + O(n^2) \)
Big Omega and Theta

\[f(n) = \Omega(g(n)) \iff \exists c > 0 \exists N \forall n \geq N \ f(n) \geq c \cdot g(n) \]

thus, the growth rate of \(g \) is less than or equal to the growth rate of \(f \) (ignoring the constant)

\[f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \]

- here \(f \) and \(g \) have the same growth rate
- sort of like saying \(A \leq B \) and \(A \geq B \) implies that \(A = B \)

now we can say (using \(f \) from before)
- \(f(n) = \Omega(n^3) \)
- \(f(n) = \Omega(n^2) \)
- \(f(n) = \Theta(n^3) \)
- \(f(n) = 3 \cdot n^3 + \Theta(n^2) \)
little-o and little-omega

\[f(n) = o(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \]

in other words, the growth rate of \(f \) is \textit{strictly less} than that of \(g \)

\[f(n) = \omega(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \]

the growth rate of \(f \) is \textit{strictly greater} than that of \(g \)

examples:

- \(f(n) = o(n^2) \)
- \(f(n) = \omega(n^4) \)
- \(f(n) = 3 \cdot n^3 + o(n^3) \)
- \(\frac{1}{n} = o(1) \)
common functions

• n^k, where k is a constant (polynomial)
• 2^n, 3^n, c^n (exponential)
• $\log_2 n$, $\log_c n$, $\ln n$ (logarithmic)
 • fact: $\log_2 n = O(\log_c n)$ (why?)
• $O(n \log n)$ (also poly, but very common)
• $n!$ (factorial)

• $2^{(\log n)^2}$ (super-poly, sub-exponential) (ok, not so common)
other functions

• factorials: \(n! = n \cdot (n - 1) \cdot (n - 2) \cdots 3 \cdot 2 \cdot 1 \)

• Stirling’s Approximation: \(n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot (1 + \Theta\left(\frac{1}{n}\right)) \)

• importantly \(\log n! = \Theta(n \cdot \log n) \)

• binomial coefficients

• Fibonacci sequence: \(F_0 = 0, F_1 = 1, F_{k+2} = F_{k+1} + F_k \)

• (Fibonacci used for AVL trees)
reading for previous material

• chapter 3
• appendix A.1
loop invariants

• “simple” method to prove correctness of a loop structure
• follows induction
• three phases: initialization (base case),
• invariance maintenance (induction), and
• termination

• look at pp 18-20 of text for more discussion
• while there, look at pp 20-22 for description of pseudo-code
general structure of argument

code:

```
<init>
while γ
do ℒ
```

invariant: α
a true/false statement about the variables of the code

initialization: show that α is true after the `<init>` phase of the code has been executed

maintenance: show that if $\alpha \land \gamma$ is true, then α will be true after one execution of the loop body $ℒ$

termination: the loop finishes when γ is false, so argue that $\neg\gamma \land \alpha$ is the desired outcome
example

input: integer \(n > 0 \)
output: integer \(k \), array \(b \) of \(k \) bits

-- initialization
int \(k = 0 \)
int \(t = n \)
array \(b = [] \) of bit

-- loop
while \(t > 0 \) do
 \(b[k] = (t \mod 2) \)
 \(k = k + 1 \)
 \(t = t \div 2 \)
-- end
return \(k, b \)

\(\gamma \): \(t > 0 \)
\(\alpha \):
- \(t \geq 0 \)
- Let \(m = \sum_{i=0}^{k-1} b[i] \cdot 2^i \) be the number represented by \(b \) in base 2. Then \(n = 2^k \cdot t + m \)

notice:
- initialization is easy
- termination also easy
- see handout (posted on class site) for full discussion