1. [15] To prove that \(f(n) \in \mathcal{O}(g(n)) \), or equivalently \(g(n) \in \Omega(f(n)) \), one has to exhibit two constants, \(c \) and \(n_0 \) such that \(f(n) \leq c \cdot g(n) \) for all \(n \geq n_0 \). For part a and b below answer “yes” or “no” and provide a proof of your answer.

(a) For \(g_1, g_2 \in \mathcal{O}(g(n)) \), \(f(n) = g_1(n) + g_2(n) \in \mathcal{O}(g(n)) \). Answer:

(b) \(\min\{f(n), g(n)\} \in \Theta(f(n) + g(n)) \) Answer:

(c) What is the time complexity of the following code fragment? Give tight upper and lower bounds.

\[
\begin{align*}
m &:= 0; \\
for (\text{int } i = 0; i < n; i++) \\
 &\quad \text{for (int } j = 0; j < n-i; j++) \\
 &\quad\quad \text{for (int } k = 0; k < i; j++) \\
 &\quad\quad\quad \text{m++;} \\
\end{align*}
\]

\(T(n) \in \)
2. [15] Let \(T \) be a (min) heap storing \(n \) keys. Give an efficient algorithm for reporting all the keys in \(T \) that are smaller than or equal to a given query key \(x \) (which is not necessarily in \(T \)). The keys do not need to be reported in sorted order. Ideally, your algorithm should run in \(O(k) \) time, where \(k \) is the number of keys reported.
3. [15] Regarding red-black trees

(a) From the RB tree of figure 1 (dotted lines mean red), delete 30.

(b) Again from the RB tree of figure 1 (the original one, before part (a)), delete 1.
Figure 1: red-black tree for question 3
4. [15] Put the following values into an initially empty (2,4)-tree:

\[15, 6, 12, 30, 22, 17, 10, 5, 9, 14, 23, 1, 17, 29, 18, 24, 7, 26, 35, 33, 27.\]
5. Regarding splay trees
 (a) Insert into an initial empty splay tree the values
 1, 5, 8, 7, 3, 2.
 (b) then delete 3
6. [15] The QuickSort algorithm in the text uses the last element of the input sequence as the pivot in a partition subroutine.

(a) Use the decision tree to model operation of a sorting method on three \((n = 3)\) elements as a comparison-based sorting algorithm.

(b) What is the running time QuickSort on an already sorted sequence?

(c) Show that the best-case time complexity of QuickSort is \(\Theta(n \log n)\).
7. [15] Give a linear \(O(n) \) time algorithm sorting \(n \) values in range 0..\(n^3 - 1 \). (Hint: represent a value \(x \) as \((i, j, k)\) where \(x = i \cdot n^2 + j \cdot n + k \).)