1. Suppose that algorithm \(A \) uses \(313 \cdot n^3 \) operations while algorithm \(B \) uses \(2 \cdot n^4 \) operations. Determine the value \(N \) such that \(A \) is as fast or faster than \(B \) for all \(n \geq N \). [4 points]

2. exercise 3.1-4, p 53. Additionally, is \(2^{2n+1} = O(2^{2n}) \)? [5 points]

3. exercise 3-2, p 61. [8 points]

4. An algorithm takes 0.4\(ms \) for input size 50 (this allows you to determine the constant \(c \), which will be different in each case). How large of an input can be solved in one hour if the run time of the algorithm is . . . ?

 (a) \(c \cdot n \)
 (b) \(c \cdot n \log n \)
 (c) \(c \cdot n^3 \)
 (d) \(c \cdot 2^n \)

 [8 points]

5. exercise 2-3, p 41. [8 points]

6. (Implement a queue using two stacks) Exercise 10.1-6, p 236 [6 points]

Total: 33 points

Notes:

- For Q2, we are not asking you to do questions 1 through 4. Just question 4 of section 3.1.
- An \(ms \) is 1/1000 of a second, also called a millisecond.