Complexity of an efficient implementation of ADT DisjointSets

ADT DisjointSets (aka. Partition or Union-Find) is important in many algorithms, starting with MWST (Kruskal) through Depth Determination. Its operations are:

- **MakeSet**: Element -> Set
- **Find**: Element -> Set
- **Union**: Set x Set -> Set

Sets are implemented as trees of elements, with each non-root element x having a unique other element as parent, $p(x)$; for the root y, $p(y) = y$. The root of the tree representing a set holds information about the set, e.g., the set’s name, size, rank.

Elements are assigned *ranks* which are defined as 0 for leaves and are incremented by 1 for the root of the result of **Union** of two sets rooted in elements of equal rank. When **Union** is applied to two sets represented by trees rooted at x and y, respectively, with $r(x) \leq r(y)$, the result is the tree rooted at y, $p(x)$ assigned the value of y. This rule is called **Union by rank** and guarantees logarithmic bound on the values of rank, which is also the (tight) upper bound on the height of the tree (the length of a longest path to the root.) With other words, the number n_r of nodes in a tree rooted at a node of rank r is at least 2^r. (You know the name of the tree with the least nodes: what is it?)

The main and somewhat unexpected reason for an efficient implementation of **Find** is the *path compression*, where all elements on the find-path gain a new value of their parent — the set’s root. (New for all but the penultimate element on the path, the root’s child.) From these implementations of **Union** and **Find** it follows that ranks are strictly increasing along any find-path.

While it’s obvious that **Union** (by rank) can be implemented in constant time, the worst case time complexity of **Find** is equally obviously logarithmic. Amortized over all operations, however, **Find** proves to be almost constant. (A separate construction of a bad case shows that it is *not* constant.)

We can fairly easily show that the *iterated logarithm*, $\log^* n$, bounds the amortized complexity of **Find**. (Defining $\log^{(i)} n$ to be the result of taking logarithm i times, $\log^* n$ equals to the smallest i such that $\log^{(i)} n \leq 1$.)

The *accounting scheme* used in the proof distributes the charges for traversing parent pointers along the find-path. For that we need the concept of *rank groups*, the group g being the interval of rank values $B(g - 1) \leq r < B(g)$. (Like HAL and IBM, B could remind you of the diagonal Ackermann function A.)
The constant time computation represented by traversing a pointer $p(x)$ is charged to the element x if and only if $r(x)$ and $r(p(x))$ belong to the same rank group and $p(x)$ is not the root. Otherwise, the traversal is charged to the Find operation.

Before we determine the values of $B(g)$, we note that we have to trade-off ("balance") the charges against Find and charges against the n elements. Therefore, we need to design relatively few rank groups, and those groups with more elements should have fewer ranks.

For nodes in a generic rank group g we have maximum charges $B(g) - B(g - 1)$ levied against each of $\sum_{B(g-1) \leq r < B(g)} n/2^r$ nodes of rank in rank group g ($n/2^r$ is the maximum possible number of nodes with rank r). After factoring out $n/2^{B(g-1)}$ the total number of charges for nodes in this rank group is bound by

$$n(B(g) - B(g - 1))/2^{B(g-1)} \sum_{B(g-1) \leq r < B(g)} 1/2^{r-B(g-1)}$$

Thus, after summing over all rank groups g, we have the total charges against all nodes bound from above by

$$n \sum_{g} B(g)/2^{B(g-1)} \sum_{i \geq 0} 1/2^{i} = 2n \sum_{g \geq 1} B(g)/2^{B(g-1)}$$

The terms of the summation will be made equal to 1 if we define $B(g) = 2^{B(g-1)}$, for $g > 0$ and $B(0) = 0$. $B(g - 1) < \log n$ (the maximum rank) and the summation equals the number of rank groups (the inverse of $B(.)$) which is the iterated logarithm $\log^* n$. Thus the amortized charge per node to be $O(\log^*(\log n))$, the number of rank groups, which is also equal to the charges against a Find operation. This shows an upper bound on the amortized time complexity of Find to be $O(\log^* n)$.

What I like about this simple proof is that it balances on the one hand charges against elements and Finds, and on the other contributions to these charges from elements with ranks in different rank groups ("charge more to few and less to many").