Sorting algorithms: comparison-based

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Sort</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log(n))$</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>$O(n \log(n))$</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>$O(n \log(n))$</td>
</tr>
</tbody>
</table>
Quick & Merge Sort

Divide and Conquer

- Original problem: sort \(n \)-item sequence \(S \). Divide the problems into sub-problems.

- Divide \(S \) into \(S_1 \) and \(S_2 \). Sort \(S_1 \) and \(S_2 \) separately.

- Combine the sorting result of \(S_1 \) and \(S_2 \) to get the sorted list for \(S \).

- When sort \(S_1 \), \(S_2 \), apply the same procedure recursively.

- Terminal case: when \(|S| = 1, 2 \), sort \(S \) directly.
Quick & Merge Sort

Divide and Conquer

- Original problem: sort n-item sequence S. Divide the problems into sub-problems.
- Divide S into S_1 and S_2. Sort S_1 and S_2 separately.
Quick & Merge Sort

Divide and Conquer

- Original problem: sort n-item sequence S. Divide the problems into sub-problems.
- Divide S into S_1 and S_2. Sort S_1 and S_2 separately.
- Combine the sorting result of S_1 and S_2 to get the sorted list for S.

When sort S_1, S_2, apply the same procedure recursively.

Terminal case: when $|S| = 1, 2$, sort S directly.
Quick & Merge Sort

Divide and Conquer

- Original problem: sort n-item sequence S. Divide the problems into sub-problems.
- Divide S into S_1 and S_2. Sort S_1 and S_2 separately.
- Combine the sorting result of S_1 and S_2 to get the sorted list for S.
- When sort S_1, S_2, apply the same procedure recursively.
Quick & Merge Sort

Divide and Conquer

- Original problem: sort \(n \)-item sequence \(S \). Divide the problems into sub-problems.
- Divide \(S \) into \(S_1 \) and \(S_2 \). Sort \(S_1 \) and \(S_2 \) separately.
- Combine the sorting result of \(S_1 \) and \(S_2 \) to get the sorted list for \(S \).
- When sort \(S_1, S_2 \), apply the same procedure recursively.
- Terminal case: when \(|S| = 1, 2 \), sort \(S \) directly.
Merge Sort

Algorithm

- Original problem: sort n-item sequence S. Divide the problems into sub-problems.
- Let S_1 be the first half of S and S_2 the second half.
Merge Sort

Algorithm

- Original problem: sort n-item sequence S. Divide the problems into sub-problems.
- Let S_1 be the first half of S and S_2 the second half.
- Merge two sorted S_1 and S_2 to get the sorted list for S.
Merge Sort

Algorithm

- Original problem: sort \(n \)-item sequence \(S \). Divide the problems into sub-problems.
- Let \(S_1 \) be the first half of \(S \) and \(S_2 \) the second half.
- Merge two sorted \(S_1 \) and \(S_2 \) to get the sorted list for \(S \).
- When sort \(S_1, S_2 \), apply the same procedure recursively.
Algorithm

- Original problem: sort n-item sequence S. Divide the problems into sub-problems.
- Let S_1 be the first half of S and S_2 the second half.
- Merge two sorted S_1 and S_2 to get the sorted list for S.
- When sort S_1, S_2, apply the same procedure recursively.
- Terminal case: when $|S| = 1, 2$, sort S directly.
Merge two sorted sequences

In assignment 3, we asked one problem to merge \(k \) sorted sequences into one with \(O(n \log k) \) (using heaps).
In assignment 3, we asked one problem to merge k sorted sequences into one with $O(n \log k)$ (using heaps).

This implies an $O(n)$ algorithm for merging two sorted sequences.
Merge two sorted sequences

- In assignment 3, we asked one problem to merge k sorted sequences into one with $O(n \log k)$ (using heaps).
- This implies an $O(n)$ algorithm for merging two sorted sequences.

Simple solution: given sorted S_1 and S_2

- One can easily maintain the smaller one of the front of S_1 and S_2.
- Remove and insert the smaller one into S. Update the front of S_1 (or S_2).
Merge Sort: Divide

85, 24, 63, 45, 17, 31, 96, 50

85, 24, 63, 45

85, 24

85

63, 45

63

45

17, 31, 96, 50

17, 31

17

31

96, 50

96

50
Merge Sort: Conquer

17, 24, 31, 45, 50, 63, 85, 96

24, 45, 63, 85

24, 85

85

45, 63

63

45

17, 31

17

31

17, 31, 50, 96

50, 96

50
Let $T(n)$ denote the time of merge-sort on n items.
Running Time

- Let $T(n)$ denote the time of merge-sort on n items.
- By the divide-and-conquer design, we have

$$T(n) = 2T(n/2) + O(n), \forall n > 2, T(1) = O(1), T(2) = O(1).$$
Running Time

- Let $T(n)$ denote the time of merge-sort on n items.
- By the divide-and-conquer design, we have
 $$T(n) = 2T(n/2) + O(n), \forall n > 2, T(1) = O(1), T(2) = O(1).$$
- In general, one can write down the following relations,
 $$T(n/2) = 2T(n/4) + O(n/2)$$
 $$T(n/4) = 2T(n/8) + O(n/4)$$
 \[\cdots \]
 $$T(n/2^i) = 2T(n/2^{i+1}) + O(n/2^i)$$
Thus, we have

\[T(n) = 2^i T(n/2^i) + O(i \times n). \]

We can choose \(i \) as large as \(\log(n) \). Then

\[T(n) = 2^{\log n} T(1) + O(n \log n) = O(n \log n). \]
Quick Sort

Algorithm

- Original problem: sort n-item sequence S. Divide the problems into sub-problems.
- Choose a pivot $x \in S$, and then let $L = \{y \in S | y < x\}$, $E = \{y \in S | y = x\}$, $G = \{y \in S | y > x\}$
Quick Sort

Algorithm

- Original problem: sort \(n \)-item sequence \(S \). Divide the problems into sub-problems.
- Choose a pivot \(x \in S \), and then let \(L = \{ y \in S \mid y < x \} \), \(E = \{ y \in S \mid y = x \} \), \(G = \{ y \in S \mid y > x \} \)
- Recursively apply quick sort to \(L \), \(G \). (no need for \(E \)).
Quick Sort

Algorithm

- Original problem: sort \(n \)-item sequence \(S \). Divide the problems into sub-problems.
- Choose a pivot \(x \in S \), and then let \(L = \{ y \in S | y < x \} \), \(E = \{ y \in S | y = x \} \), \(G = \{ y \in S | y > x \} \)
- Recursively apply quick sort to \(L, G \). (no need for \(E \)).
- Combine the sorted \(L, E, G \). Simply \([L, E, G]\).
Quick Sort

Pivot Choice

- Multiple choices. Could affect the final complexity.

Ideally, hope L, G have equal sizes. Then choose the median as the pivot.

Find the median: $O(n)$. Find L, G: also $O(n)$

Combine L, E, G

L, E, G are already sorted and in the right order. Simply combine them: $O(1)$.
Quick Sort

Pivot Choice

- Multiple choices. Could affect the final complexity.
- Ideally, hope L, G have equal sizes. Then choose the median as the pivot.
Quick Sort

Pivot Choice

- Multiple choices. Could affect the final complexity.
- Ideally, hope L, G have equal sizes. Then choose the median as the pivot.
- Find the median: $O(n)$. Find L, G: also $O(n)$
Quick Sort

Pivot Choice

- Multiple choices. Could affect the final complexity.
- Ideally, hope \(L, G \) have equal sizes. Then choose the median as the pivot.
- Find the median: \(O(n) \). Find \(L, G \): also \(O(n) \)

Combine \(L, E, G \)

- \(L, E, G \) are already sorted and in the right order. Simply combine them: \(O(1) \).
Quick Sort: Divide

85, 24, 63, 45, 17, 31, 96, 50

24, 45, 17, 31

24, 17

· 24

45

85, 63, 96

85, 63

· 85

·
Quick Sort: Conquer

17, 24, 31, 45, 50, 63, 85, 96

17, 24, 31, 45

17, 24

· 24

45

63, 85, 96

63, 85

· 85

·
Let $T(n)$ denote the time of merge-sort on n items.
Running Time

Let \(T(n) \) denote the time of merge-sort on \(n \) items.
Assume finding the median \(O(n) \), then we have

\[
T(n) = 2T(n/2) + O(n), \forall n > 2, \quad T(1) = O(1), \quad T(2) = O(1).
\]

Let $T(n)$ denote the time of merge-sort on n items.
Assume finding the median $O(n)$, then we have

$$T(n) = 2T(n/2) + O(n), \forall n > 2, T(1) = O(1), T(2) = O(1).$$

From the above, we have $T(n) = O(n \log n)$.