Lecture 02/13/17

Lecturer: Xiaodi Wu

Reading: Chapter 6.5, 6.2
Heap Example: only keys

```
[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]
```
Heap Example: only keys

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]
Goals

- Maintain properties of heap.
- Cost \sim the height of the heap. i.e., $\Theta(h) = \Theta(\log(n))$.

Insertion
Insertion

Goals

- Maintain properties of heap.
- Cost \sim the height of the heap. i.e., $\Theta(h) = \Theta(\log(n))$.

- Heap-Order Property:
 - (min-heap) for every node v other than the root, its key \geq the key of its parent.
 - (max-heap) for every node v other than the root, its key \leq the key of its parent.
Insertion

Goals

- Maintain properties of heap.
- Cost \(\sim\) the height of the heap. i.e., \(\Theta(h) = \Theta(\log(n))\).

- Heap-Order Property:
 - (min-heap) for every node \(v\) other than the root, its key \(\geq\) the key of its parent.
 - (max-heap) for every node \(v\) other than the root, its key \(\leq\) the key of its parent.

- Complete Binary Trees: binary tree with height \(h\) and maximum number of nodes in all levels \(0, \cdots, h - 1\). In level \(h - 1\), the internal nodes are to the left of the external nodes.
Take Min-Heap as an example

Note: the textbook uses Max-Heap as an example. Our slides complement the story.

Basic Operation: A the array storing the heap

Take Min-Heap as an example

Note: the textbook uses Max-Heap as an example. Our slides complement the story.

Basic Operation: A the array storing the heap

- Heap-Maximum (A): easy solution?
Take Min-Heap as an example

Note: the textbook uses Max-Heap as an example. Our slides complement the story.

Basic Operation: A the array storing the heap

- Heap-Maximum (A): easy solution?
- Heap-Increase-Key (A, x, k): increase the element x’s key to the new value k. How to implement?
Take Min-Heap as an example

Note: the textbook uses Max-Heap as an example. Our slides complement the story.

Basic Operation: A the array storing the heap

- Heap-Maximum (A): easy solution?
- Heap-Increase-Key (A, x, k): increase the element x’s key to the new value k. How to implement?
- Heap-Decrease-Key (A, x, k): decrease the element x’s key to the new value k. How to implement?
Decrease-Key and Insertion in the Min-heap

Decrease-Key

- Update the key value of element x to k. $O(1)$.

Min-Heap-Insert:

- Attach a new element to the end of the array with key $+$ ∞.
- Decrease-key the new element to the right key k (then up-heap bubbles).
Decrease-Key and Insertion in the Min-heap

Decrease-Key

- Update the key value of element x to k. $O(1)$.
- Increase/Decrease of the key might violate the heap-order property. Why?
Decrease-Key and Insertion in the Min-heap

Decrease-Key

- Update the key value of element \(x \) to \(k \). \(O(1) \).
- Increase/Decrease of the key might violate the heap-order property. Why?
- Decrease-Key: Up-Heap Bubbling on the element \(x \).
Decrease-Key and Insertion in the Min-heap

Decrease-Key

- Update the key value of element x to k. $O(1)$.
- Increase/Decrease of the key might violate the heap-order property. Why?
- Decrease-Key: Up-Heap Bubbling on the element x.
- Up-Heap bubbling on any node z is as follows. If z is root, stop. Otherwise, let u be z’s parent. If $\text{key}(z) < \text{key}(u)$, then swap the key-element pair stored in node z, u and continue up-heap bubbling on u. Otherwise, stop!
Decrease-Key and Insertion in the Min-heap

Decrease-Key

- Update the key value of element x to k. $O(1)$.
- Increase/Decrease of the key might violate the heap-order property. Why?
- Decrease-Key: Up-Heap Bubbling on the element x.
- Up-Heap bubbling on any node z is as follows. If z is root, stop. Otherwise, let u be z’s parent. If $key(z) < key(u)$, then swap the key-element pair stored in node z, u and continue up-heap bubbling on u. Otherwise, stop!
- $O(h)$ for Up-Heap Bubbling. i.e., $O(\log n)$. (array-based)
Decrease-Key and Insertion in the Min-heap

Decrease-Key

- Update the key value of element \(x\) to \(k\). \(O(1)\).
- Increase/Decrease of the key might violate the heap-order property. Why?
- Decrease-Key: Up-Heap Bubbling on the element \(x\).
- Up-Heap bubbling on any node \(z\) is as follows. If \(z\) is root, stop. Otherwise, let \(u\) be \(z\)'s parent. If \(\text{key}(z) < \text{key}(u)\), then swap the key-element pair stored in node \(z\), \(u\) and continue up-heap bubbling on \(u\). Otherwise, stop!
- \(O(h)\) for Up-Heap Bubbling. i.e., \(O(\log n)\).(array-based)

Min-Heap-Insert: \(O(\log(n))\)

- Attach a new element to the end of the array with key \(+\infty\).
- Decrease-key the new element to the right key \(k\) (then up-heap bubbles).
Heap Example: Insertion with key 2

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]
Heap Example: Insertion with key 2

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8, 2]
Heap Example: Insertion with key 2

[4, 5, 6, 15, 9, 7, 2, 16, 25, 14, 12, 11, 8, 20]
Heap Example: Insertion with key 2

[4, 5, 2, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]
Heap Example: Insertion with key 2

[2, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]
Insertion: Correctness

- Insertion after the last node \Rightarrow complete binary trees.
Insertion: Correctness

- Insertion after the last node \Rightarrow complete binary trees.
- Up-Heap Bubble: Heap-Order Property. How to prove?
Insertion: Correctness

- Insertion after the last node \Rightarrow complete binary trees.
- Up-Heap Bubble: Heap-Order Property. How to prove?
- UP-Heap Bubble can start from anywhere as long as its subtree is a valid heap!
Insertion: Correctness

- Insertion after the last node \Rightarrow complete binary trees.
- Up-Heap Bubble: Heap-Order Property. How to prove?
- UP-Heap Bubble can start from anywhere as long as its subtree is a valid heap!

Step-by-Step Snapshots of the Array

- $[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]$
- $[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8, 2]$
- $[4, 5, 6, 15, 9, 7, 2, 16, 25, 14, 12, 11, 8, 20]$
- $[4, 5, 2, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]$
- $[2, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]$
Increase-Key and Heap-Extract-Min in the Min-heap

Increase-Key

- Update the key value of element x to k. $O(1)$.
Increase-Key and Heap-Extract-Min in the Min-heap

Increase-Key

- Update the key value of element x to k. $O(1)$.
- Increase-Key: Down-Heap Bubbling on the element x. or Min-Heapify(x).
Increase-Key and Heap-Extract-Min in the Min-heap

Increase-Key

- Update the key value of element x to k. $O(1)$.
- Increase-Key: Down-Heap Bubbling on the element x. or Min-Heapify(x).

Min-Heapify(z) on any node z is as follows. If z and its children satisfy the Min-Head property, stop. Otherwise, let u be z’s child with the smallest key. Swap the key-element pair stored in node z, u and continue Min-Heapify on u.

Heap-Extract-Min: $O(\log(n))$ for Down-Heap Bubbling, i.e., Min-Heapify.
Increase-Key and Heap-Extract-Min in the Min-heap

Increase-Key

- Update the key value of element \(x \) to \(k \). \(O(1) \).
- Increase-Key: Down-Heap Bubbling on the element \(x \). or Min-Heapify(\(x \)).
- Min-Heapify(\(z \)) on any node \(z \) is as follows. If \(z \) and its children satisfy the Min-Head property, stop. Otherwise, let \(u \) be \(z \)'s child with the smallest key. Swap the key-element pair stored in node \(z \), \(u \) and continue Min-Heapify on \(u \).
- \(O(\log(n)) \) for Down-Heap Bubbling, i.e., Min-Heapify.
Increase-Key and Heap-Extract-Min in the Min-heap

Increase-Key

- Update the key value of element \(x \) to \(k \). \(O(1) \).
- Increase-Key: Down-Heap Bubbling on the element \(x \). or Min-Heapify(\(x \)).
- Min-Heapify(\(z \)) on any node \(z \) is as follows. If \(z \) and its children satisfy the Min-Head property, stop. Otherwise, let \(u \) be \(z \)'s child with the smallest key. Swap the key-element pair stored in node \(z \), \(u \) and continue Min-Heapify on \(u \).
- \(O(\log(n)) \) for Down-Heap Bubbling, i.e., Min-Heapify.

Heap-Extract-Min: \(O(\log(n)) \)

- Increase-key \(A[1] \) to the right key \(k \) (then Min-Heapify).
Heap Example: Heap-Extract-Min

[2, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]
Heap Example: Heap-Extract-Min

[20, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8]
Heap Example: Heap-Extract-Min

[4, 5, 20, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8]
Heap Example: Heap-Extract-Min

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]
Heap-Extract-Min: Correctness

- Remove the root and move the last node to the root ⇒ complete binary trees.
Heap-Extract-Min: Correctness

- Remove the root and move the last node to the root ⇒ complete binary trees.
- Down-Heap Bubble: Heap-Order Property. How to prove?
Heap-Extract-Min: Correctness

- Remove the root and move the last node to the root ⇒ complete binary trees.
- Down-Heap Bubble: Heap-Order Property. How to prove?
- Down-Heap Bubble can start from any node as long as anywhere else except its subtree is a valid heap!
Heap-Extract-Min: Correctness

- Remove the root and move the last node to the root ⇒ complete binary trees.
- Down-Heap Bubble: Heap-Order Property. How to prove?
- Down-Heap Bubble can start from any node as long as anywhere else except its subtree is a valid heap!

Step-by-Step Snapshots of the Array

- \[[2, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20] \]
- \[[20, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8] \]
- \[[4, 5, 20, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8] \]
- \[[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8] \]
Locator

Assume an abstract object **locator** ℓ that keeps track of the position of each node in heap as well as the key-element pair stored. **Can Increase and Decrease key at any location.**
Heap: Up/Down-heap bubbling at any location

Locator
Assume an abstract object locator ℓ that keeps track of the position of each node in heap as well as the key-element pair stored. \textbf{Can Increase and Decrease key at any location.}

RemoveItem(ℓ)

- How? Can we use Heap-Extract-Min?
Heap: Up/Down-heap bubbling at any location

Locator
Assume an abstract object locator ℓ that keeps track of the position of each node in heap as well as the key-element pair stored. Can Increase and Decrease key at any location.

RemoveItem(ℓ)

- How? Can we use Heap-Extract-Min?
- Remove the node at ℓ and move the last node to ℓ.
Heap: Up/Down-heap bubbling at any location

Locator
Assume an abstract object locator \(\ell \) that keeps track of the position of each node in heap as well as the key-element pair stored. **Can Increase and Decrease key at any location.**

`Removeltem(\ell)`

- How? Can we use Heap-Extract-Min?
- Remove the node at \(\ell \) and move the last node to \(\ell \).
- Up or Down-Heap Bubble on \(\ell \)?
Heap: Up/Down-heap bubbling at any location

Locator
Assume an abstract object locator \(\ell \) that keeps track of the position of each node in heap as well as the key-element pair stored. Can Increase and Decrease key at any location.

Removeltem(\(\ell \))

- How? Can we use Heap-Extract-Min?
- Remove the node at \(\ell \) and move the last node to \(\ell \).
- Up or Down-Heap Bubble on \(\ell \)?

Deal with Max (textbook Chap 6)?
Deal with both Max and Min?