Total Order & Comparator

Total Order
\(\leq \), defined on every pair of elements, such that

- **Reflexive**: \(k \leq k \).
- **Anti-symmetric**: \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \Rightarrow k_1 = k_2 \).
- **Transitive**: \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \Rightarrow k_1 \leq k_3 \).
Total Order & Comparator

Total Order
≤, defined on every pair of elements, such that

- Reflexive: \(k \leq k \).
- Anti-symmetric: \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \) \(\Rightarrow k_1 = k_2 \).
- Transitive: \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \) \(\Rightarrow k_1 \leq k_3 \).

Comparators
A comparator is an object that defines a total order on elements in the following way:

- isLess\((a,b)\), isLessOrEqualTo\((a,b)\)
- isEqualTo\((a,b)\)
- isGreater\((a,b)\), isGreaterOrEqualTo\((a,b)\)
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by keys. Each element is associated with a key.
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by **keys**. Each element is associated with a **key**.

- **insert**\((k, e)\): insert an element \(e\) with key \(k\) into PQ.
- **removeMin**(): Return and remove from PQ an element with the **smallest** key. **min-priority queue**.
- **removeMax**(): Return and remove from PQ an element with the **largest** key. **max-priority queue**.
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by keys. Each element is associated with a key.

- insert\((k, e)\): insert an element \(e\) with key \(k\) into PQ.
- removeMin(): Return and remove from PQ an element with the smallest key. min-priority queue.
- removeMax(): Return and remove from PQ an element with the largest key. max-priority queue.

Simple Implementation on top of Queues

- Store Keys.
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by keys. Each element is associated with a key.

▶ insert\((k, e)\): insert an element \(e\) with key \(k\) into PQ.
▶ removeMin(): Return and remove from PQ an element with the smallest key. min-priority queue.
▶ removeMax(): Return and remove from PQ an element with the largest key. max-priority queue.

Simple Implementation on top of Queues

▶ Store Keys.
▶ insert\((k, e)\): \(O(1)\), removeMin()\(]/\)removeMax(): \(O(n)\). How?
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by keys. Each element is associated with a key.

- insert(k, e): insert an element e with key k into PQ.
- removeMin(): Return and remove from PQ an element with the smallest key. min-priority queue.
- removeMax(): Return and remove from PQ an element with the largest key. max-priority queue.

Simple Implementation on top of Queues

- Store Keys.
- insert(k, e): $O(1)$, removeMin()/removeMax(): $O(n)$. How?
- insert(k, e): $O(n)$, removeMin()/removeMax(): $O(1)$. How?
Algorithm PQ-sort(C, P)
Input: an n-element sequence C, a priority queue P.
Output: the sequence C sorted by the total order relation.

while ! C.isEmpty() do
 $e \leftarrow C$.removeFirst()
 P.insert(e, e).
end while

while ! P.isEmpty() do
 $e \leftarrow P$.removeMin(). P.removeMax()
 C.insertLast(e).
end while
PQ-based Sorting

Algorithm PQ-sort(\(C, P\))

- **Input:** an \(n\)-element sequence \(C\), a priority queue \(P\).
- **Output:** the sequence \(C\) sorted by the total order relation.

```plaintext
while ! C.isEmpty() do
    e ← C.removeFirst()
    P.insert(e, e).
end while

while ! P.isEmpty() do
    e ← P.removeMin(). P.removeMax()
    C.insertLast(e).
end while
```

Correctness?
PQ-based Sorting: Simple Implementation

- $\text{insert}(k, e)$: $O(1)$, $\text{removeMin}()$: $O(n)$. Total running time $O(n^2)$. Also known as "selection-sort".

Improvement on efficiency?

- $\text{insert}(k, e)$: $O(\log n)$, $\text{removeMin}()$: $O(\log n)$. Total running time $O(n \log n)$. Also known as "heap-sort".

Optimal running time? Yes for comparison-based sorting.

Week 10!
PQ-based Sorting: Simple Implementation

- \text{insert}(k, e): O(1), \text{removeMin}(): O(n).
 Total running time \(O(n^2) \). Also known as "selection-sort".

- \text{insert}(k, e): O(n), \text{removeMin}(): O(1).
 Total running time \(O(n^2) \). Also known as "insertion-sort".
PQ-based Sorting: Simple Implementation

- insert(k, e): $O(1)$, removeMin(): $O(n)$.
 Total running time $O(n^2)$. Also known as "selection-sort".
- insert(k, e): $O(n)$, removeMin(): $O(1)$.
 Total running time $O(n^2)$. Also known as "insertion-sort".

Improvement on efficiency?

- insert(k, e): $O(\log n)$, removeMin(): $O(\log n)$.
 Total running time $O(n \log n)$. Also known as "heap-sort".
PQ-based Sorting: Simple Implementation

- `insert(k, e): O(1), removeMin(): O(n).`
 Total running time `O(n^2)`. Also known as "selection-sort".
- `insert(k, e): O(n), removeMin(): O(1).`
 Total running time `O(n^2)`. Also known as "insertion-sort".

Improvement on efficiency?

- `insert(k, e): O(log n), removeMin(): O(log n).`
 Total running time `O(n log n)`. Also known as "heap-sort".
- Optimal running time? Yes for comparison-based sorting.
 Week 10!
How to achieve $O(\log n)$ for both insertion and removal?

Heap

Instead of storing elements in sequences, store in complete binary trees satisfying the Heap-Order Property.
How to achieve $O(\log n)$ for both insertion and removal?

Heap

Instead of storing elements in sequences, store in complete binary trees satisfying the **Heap-Order Property**.

- **Heap-Order Property:**
 - **(min-heap)** for every node v other than the root, its key \geq the key of its parent.
 - **(max-heap)** for every node v other than the root, its key \leq the key of its parent.
How to achieve $O(\log n)$ for both insertion and removal?

Heap

Instead of storing elements in sequences, store in complete binary trees satisfying the **Heap-Order Property**.

- **Heap-Order Property:**

 - *(min-heap)* for every node v other than the root, its key \geq the key of its parent.

 - *(max-heap)* for every node v other than the root, its key \leq the key of its parent.

- **Complete Binary Trees:** binary tree with height h and maximum number of nodes in all levels $0, \cdot \cdot \cdot, h - 1$. In level $h - 1$, the internal nodes are to the left of the external nodes.
How to achieve $O(\log n)$ for both insertion and removal?

Heap

Instead of storing elements in sequences, store in complete binary trees satisfying the **Heap-Order Property**.

- **Heap-Order Property:**
 - *(min-heap)* for every node v other than the root, its key \geq the key of its parent.
 - *(max-heap)* for every node v other than the root, its key \leq the key of its parent.

- **Complete Binary Trees:** binary tree with height h and maximum number of nodes in all levels $0, \cdots, h-1$. In level $h-1$, the internal nodes are to the left of the external nodes.

- **Last Node:** as the rightmost internal node on level $h-1$.
Heap Example: only keys
Vector-based Implementation

Binary-Tree

- $p(v)$: the rank of v stored in array A of size N.
- If v is the root, then $p(v) = 1$.
- If v is the left child of u, then $p(v) = 2p(u)$.
- If v is the right child of u, then $p(v) = 2p(u) + 1$.

Application to heaps

- The last node of a heap of n keys is indexed n in the array.
- The first node of a heap is indexed 1 in the array.
Vector-based Implementation

Binary-Tree

- $p(v)$: the rank of v stored in array A of size N.
- If v is the root, then $p(v) = 1$.
- If v is the left child of u, then $p(v) = 2p(u)$.
- If v is the right child of u, then $p(v) = 2p(u) + 1$.

Application to heaps

- The last node of a heap of n keys is indexed n in the array.
- The first node of a heap is indexed 1 in the array.
Vector-based Implementation

Binary-Tree

- $p(v)$: the rank of v stored in array A of size N.
- If v is the root, then $p(v) = 1$.
- If v is the left child of u, then $p(v) = 2p(u)$.
- If v is the right child of u, then $p(v) = 2p(u) + 1$.

Application to heaps

- The last node of a heap of n keys is indexed n in the array.
- The first node of a heap is indexed 1 in the array.
Heap Example: only keys

The image shows a binary heap with the following keys:

- Root node: 4
- Left child of root: 5
 - Left child of 5: 15
 - Left child of 15: 16
 - Right child of 15: 25
 - Right child of 5: 9
 - Left child of 9: 14
 - Right child of 9: 12
 - Right child of 9: 11
 - Right child of 9: 8
- Right child of root: 6
 - Left child of 6: 20
- Right child of 15: 7
 - Left child of 7: 11
 - Right child of 7: 8
Heap Example: only keys

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]
Heap Property

Theorem (Exercise 6.1-2)

A heap T storing n keys has height $h = \Theta(\log(n))$.
Heap Property

Theorem (Exercise 6.1-2)

A heap T storing n keys has height $h = \Theta(\log(n))$

Proof.

\[
2^0 + \cdots + 2^{h-1} \leq n \leq 2^0 + \cdots + 2^h
\]
Heap Property

Theorem (Exercise 6.1-2)
A heap T storing n keys has height $h = \Theta(\log(n))$

Proof.

$2^0 + \cdots + 2^{h-1} \leq n \leq 2^0 + \cdots + 2^h$

$2^h - 1 \leq n \leq 2^{h+1} - 1$.

$h = \Theta(\log(n))$.

Remark: if updates \sim height h, then $\Theta(\log(n))$.
Heap Property

Theorem (Exercise 6.1-2)

A heap T storing n keys has height $h = \Theta(\log(n))$

Proof.

\[2^0 + \cdots + 2^{h-1} \leq n \leq 2^0 + \cdots + 2^h\]

\[2^h - 1 \leq n \leq 2^{h+1} - 1.\]

\[h = \Theta(\log(n)).\]

Remark: if updates \sim height h, then $\Theta(\log(n))$.
Insertion

Goals

- Maintain properties of heap.
- Cost \sim the height of the heap. i.e., $\Theta(h) = \Theta(\log(n))$.
Insertion

Goals

- Maintain properties of heap.
- Cost ∼ the height of the heap. i.e., $\Theta(h) = \Theta(\log(n))$.
- Heap-Order Property:
 (min-heap) for every node v other than the root, its key \geq the key of its parent.
 (max-heap) for every node v other than the root, its key \leq the key of its parent.
Insertion

Goals

- Maintain properties of heap.
- Cost \sim the height of the heap. i.e., $\Theta(h) = \Theta(\log(n))$.

- Heap-Order Property:
 - \textit{(min-heap)} for every node v other than the root, its key \geq the key of its parent.
 - \textit{(max-heap)} for every node v other than the root, its key \leq the key of its parent.

- Complete Binary Trees: binary tree with height h and maximum number of nodes in all levels $0, \ldots, h - 1$. In level $h - 1$, the internal nodes are to the left of the external nodes.