Lecture 01/23/16

Lecturer: Xiaodi Wu

Reading Assignment: Chap 17.1-17.3, Note on Amortized Analysis, Chap 17.4 (optional)
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with n elements, what is the time complexity of multi-pop()?

$O(n)$. Time of m push() and/or multi-pop() operations from an empty stack

- push() takes $O(1)$, multi-pop() takes $O(m)$, worst case $m \times O(m) = O(m^2)$.
- It is a correct $O(\cdot)$ statement, but a huge over-estimate.
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with n elements, what is the time complexity of multi-pop()? $O(n)$.
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with \(n \) elements, what is the time complexity of multi-pop()? \(O(n) \).

Time of \(m \) push() and/or multi-pop() operations from an empty stack

- push() takes \(O(1) \), multi-pop() takes \(O(m) \), worst case \(m \times O(m) = O(m^2) \).
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with n elements, what is the time complexity of multi-pop()? $O(n)$.

Time of m push() and/or multi-pop() operations from an empty stack

- push() takes $O(1)$, multi-pop() takes $O(m)$, worst case $m \times O(m) = O(m^2)$.
- It is a correct $O(\cdot)$ statement, but a huge over-estimate.
Amortized Analysis: cont’d

Theorem

A series of \(m \) operations on an initially empty stack takes \(O(m) \) time.
Amortized Analysis: cont’d

Theorem
A series of m operations on an initially empty stack takes $O(m)$ time.

Proof.
Let M_0, \cdots, M_{m-1} be the series of operations, and let $M_{i_0}, \cdots, M_{i_{k-1}}$ be the k multi-pop() operations. We have

$$0 \leq i_0 \leq \cdots \leq i_{k-1} \leq n - 1, i_{-1} = -1.$$
Amortized Analysis: cont’d

Theorem

A series of m operations on an initially empty stack takes $O(m)$ time.

Proof.

Let M_0, \cdots, M_{m-1} be the series of operations, and let $M_{i_0}, \cdots, M_{i_{k-1}}$ be the k multi-pop() operations. We have

$$0 \leq i_0 \leq \cdots \leq i_{k-1} \leq n - 1, \quad i_{-1} = -1.$$

Time cost of $M_{i_{j+1}}$ to M_{i_j} for each $j = 0, \cdots, k - 1$:

- $i_j - i_{j-1} - 1$ operations of push(). cost $O(i_j - i_{j-1})$.

Amortized Analysis: cont’d

Theorem
A series of \(m \) operations on an initially empty stack takes \(O(m) \) time.

Proof.
Let \(M_0, \cdots, M_{m-1} \) be the series of operations, and let \(M_{i_0}, \cdots, M_{i_{k-1}} \) be the \(k \) multi-pop() operations. We have

\[
0 \leq i_0 \leq \cdots \leq i_{k-1} \leq n-1, i_{-1} = -1.
\]

Time cost of \(M_{i_{j+1}} \) to \(M_{i_j} \) for each \(j = 0, \cdots, k-1 \):

- \(i_j - i_{j-1} - 1 \) operations of push(). cost \(O(i_j - i_{j-1}) \).
- 1 multi-pop(): only \(i_j - i_{j-1} - 1 \) elements in the stack. cost: \(O(i_j - i_{j-1}) \).
Amortized Analysis: cont’d

Theorem
A series of m operations on an initially empty stack takes $O(m)$ time.

Proof.
Sum up, we have the total time is (telescoping sum)

$$O \left(\sum_{j=0}^{k-1} (i_j - i_{j-1}) \right) = O(m).$$
Amortized Analysis: cont’d

Theorem
A series of m operations on an initially empty stack takes $O(m)$ time.

Proof.
Sum up, we have the total time is (telescoping sum)

$$O \left(\sum_{j=0}^{k-1} (i_j - i_{j-1}) \right) = O(m).$$

Remark: Worst case analysis of a single operation leads to loose bounds for a series of operations!
Amortized Analysis: cont’d

For a single operation,

\[\text{amortized running time} = \frac{\text{worst case complexity of } m \text{ operations}}{m}. \]
Amortized Analysis: cont’d

For a single operation,

\[
\text{amortized running time} = \frac{\text{worst case complexity of } m \text{ operations}}{m}.
\]

For multi-type operations, e.g., 2 types

\[
\text{worst case complexity of } m_1 \text{ op1 and } m_2 \text{ op2} \\
\leq \text{amortized complexity op1 } \times m_1 + \text{amortized complexity op2 } \times m_2.
\]
Amortized Analysis: cont’d

For a single operation,

\[
\text{amortized running time} = \frac{\text{worst case complexity of } m \text{ operations}}{m}.
\]

For multi-type operations, e.g., 2 types

\[
\text{worst case complexity of } m_1 \text{ op1 and } m_2 \text{ op2} \\
\leq \text{amortized complexity op1} \times m_1 + \text{amortized complexity op2} \times m_2.
\]

Thus, push() and multi-pop() have amortized complexity \(O(1) \).
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
- **Key:** analyze and upper bound the complexity of a series of operations!
Amortized Analysis: more intuitive derivation

- **Question**: perform amortized analysis besides by definition?
- **Key**: analyze and upper bound the complexity of a series of operations!

\[
\text{\#primitive operations in m operations } \leq \text{ resources spent}
\]
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
- **Key:** analyze and upper bound the complexity of a series of operations!

\[
\text{#primitive operations in m operations} \leq \text{resources spent}
\]

When the resource is

- **Money** ⇒ *The Accounting Method.*
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
- **Key:** analyze and upper bound the complexity of a series of operations!

\[
\#\text{primitive operations in } m \text{ operations} \leq \text{resources spent}
\]

When the resource is

- Money ⇒ **The Accounting Method.**
- Energy ⇒ **The Potential Function Method**
The Accounting Method

Principle

▶ Every primitive operation costs 1-unit money.
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
- Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
- Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
- Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
- Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
- Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!

Correctness

\[
\text{#all primitive ops} \leq \text{#all money deposited} = \text{amortized complexity} \times \text{# ops}
\]
The Accounting Method

Principle

▶ Every primitive operation costs 1-unit money.
▶ Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
▶ Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!

Correctness

\[
\#\text{all primitive ops} \leq \#\text{all money deposited} = \text{amortized complexity} \times \#\text{ ops}
\]

\leq \text{due to your balance being non-negative all the time!}
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
- deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
- deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
- A formal proof requires showing the non-negativity of your balance.
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
- deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
- A formal proof requires showing the non-negativity of your balance.

Credit Invariant

- Invariant: \# of (bank) credits = \# of items in the stack.
- Prove the invariant for each operation: push(), multi-pop().