CIS 624: Structure of Programming Languages
Lecture 9 — Simply Typed Lambda Calculus
Boyana Norris

Why types? (Part 1)
1. Catch “simple” mistakes early, even for untested code
 - Example: “if” applied to “mkpair”
 - Even if some too-clever programmer meant to do it
 - Even though decidable type systems must be conservative
2. (Safety) Prevent getting stuck (e.g., x v)
 - Ensure execution never gets to a “meaningless” state
 - But “meaningless” depends on the semantics
 - Each PL typically makes some things type errors (again being conservative)
 - Others run-time errors
3. Enforce encapsulation (an abstract type)
 - Clients can’t break invariants
 - Clients can’t assume an implementation
 - Requires safety, meaning no “stuck” states that corrupt run-time (e.g., C/C++)
 - Can enforce encapsulation without static types, but types are a particularly nice way

Review: L-R CBV Lambda Calculus
\[e ::= \lambda x. e \mid x \mid e e \]
\[v ::= \lambda x. e \]
Implicit systematic renaming of bound variables
- \(\alpha \)-equivalence on expressions (“the same term”)

\[e \rightarrow e' \]
\[(\lambda x. e) v \rightarrow e[v/x] \]
\[e_1 \rightarrow e'_1 \quad e_2 \rightarrow e'_2 \]
\[e_1 [e_2/x] = e_3 \]
\[x[e/x] = e \]
\[y \neq x \quad e_1[e/x] = e'_1 \quad e_2[e/x] = e'_2 \]
\[e_1[e/x] = e'_1 \quad y \neq x \quad y \not\in FV(e) \]
\[(\lambda y. e_1)[e/x] = \lambda y. e'_1 \]

Why types? (Part 2)
4. Assuming well-typedness allows faster implementations
 - Smaller interfaces enable optimizations
 - Don’t have to check for impossible states
 - Orthogonal to safety (e.g., C/C++)
5. Syntactic overloading
 - Have symbol lookup depend on operands’ types
 - Only modestly interesting semantically
 - Late binding (lookup via run-time types) more interesting
6. Detect other errors via extensions
 - Often via a “type-and-effect” system
 - Deep similarities in analyses suggest type systems a good way to think-about/define/prove what you’re checking
 - Uncaught exceptions, tainted data, non-termination, IO performed, data races, dangling pointers, ...

We’ll focus on (1), (2), and (3) and maybe (6)
What is a type system?

Er, uh, you know it when you see it. Some clues:

- A decidable (?) judgment for classifying programs
 - E.g., $e_1 + e_2$ has type int if e_1, e_2 have type int (else no type)
- A sound (?) abstraction of computation
 - E.g., if $e_1 + e_2$ has type int, then evaluation produces an int (with caveats!)
- Fairly syntax directed
 - Non-example (?): e terminates within 100 steps
- Particularly fuzzy distinctions with abstract interpretation
 - Possible topic for a later lecture
 - Often a more natural framework for flow-sensitive properties
 - Types often more natural for higher-order programs

This is a CS-centric, PL-centric view. Foundational type theory has more rigorous answers

- Later lecture: Typed PLs are like proof systems for logics

Plan for the next few weeks

- Simply typed λ calculus
- (Syntactic) Type Soundness (i.e., safety)
- Extensions (pairs, sums, lists, recursion)

Break for the Curry-Howard isomorphism; continuations

- Subtyping
- Polymorphic types (generics)
- Recursive types
- Abstract types
- Effect systems

Omitted: Type inference

Adding constants

Enrich the Lambda Calculus with integer constants:

- Not strictly necessary, but makes types seem more natural

\[
\begin{align*}
 e & ::= \lambda x. e \mid x \mid e \cdot e \mid c \\
 v & ::= \lambda x. e \mid c
\end{align*}
\]

No new operational-semantics rules since constants are values

We could add $+$ and other primitives

- Then we would need new rules (e.g., 3 small-step for $+$)
- Alternately, parameterize “programs” by primitives: $\text{\texttt{\textbackslash{}\textbackslash{}times}}$, $\text{\texttt{\textbackslash{}\textbackslash{}times}}$
 - Like Pervasives in OCaml
 - A great way to keep language definitions small

Stuck

Key issue: can a program “get stuck” (reach a “bad” state)?

- Definition: e is stuck if e is not a value and there is no e' such that $e \rightarrow e'$

- Definition: e can get stuck if there exists an e' such that $e \rightarrow^* e'$ and e' is stuck
 - In a deterministic language, e “gets stuck”

Most people don’t appreciate that stuckness depends on the operational semantics

- Inherent given the definitions above

What’s stuck?

Given our language, what are the set of stuck expressions?

- Note: Explicitly defining the stuck states is unusual

\[
\begin{align*}
 e & ::= \lambda x. e \mid x \mid e \cdot e \mid c \\
 v & ::= \lambda x. e \mid c
\end{align*}
\]

\[
(\lambda x. e) v \rightarrow e[v/x]
\]

\[
\begin{array}{ll}
 e_1 \rightarrow e_1' & e_2 \rightarrow e_2' \\
 v e_1 \rightarrow v e_1' & v e_2 \rightarrow v e_2'
\end{array}
\]

(Hint: The full set is recursively defined.)

\[
S ::= x \mid c \cdot v \mid S \cdot e \mid v \cdot S
\]

Note: Can have fewer stuck states if we add more rules

- Example:

- In unsafe languages, stuck states can set the computer on fire

Soundness and Completeness

A type system is a judgment for classifying programs

- “accepts” a program if some complete derivation gives it a type, else “rejects”

A sound type system never accepts a program that can get stuck

- No false negatives

A complete type system never rejects a program that can’t get stuck

- No false positives

It is typically undecidable whether a stuck state can be reachable

- Corollary: If we want an algorithm for deciding if a type system accepts a program, then the type system cannot be sound and complete

- We’ll choose soundness, try to reduce false positives in practice
Wrong Attempt

\[\tau ::= \text{int} \mid \text{fn} \]

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash \lambda x. e : \text{fn} \quad \Gamma \vdash c : \text{int} \]

\[\Gamma \vdash e_1 : \text{fn} \quad \Gamma \vdash e_2 : \text{int} \quad \Gamma \vdash e_1 e_2 : \text{int} \]

1. NO: can get stuck, e.g., \((\lambda x. x) 3\)
2. NO: too restrictive, e.g., \((\lambda x. x) (\lambda y. y)\)
3. NO: types not preserved, e.g., \((\lambda x. \lambda y. y) 3\)

STLC Type System

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]

\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

\[\Gamma \vdash e : \tau \]

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

A closer look

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

Where did \(\tau_1\) come from?

- Our rule “inferred” or “guessed” it
- To be syntax directed, change \(\lambda x. e\) to \(\lambda x : \tau. e\)
- and use that \(\tau\)

Can think of “adding \(x\)” as shadowing or requiring \(x \not\in \text{Dom}(\Gamma)\)

- Systematic renaming (\(\alpha\)-conversion) ensures \(x \not\in \text{Dom}(\Gamma)\) is not a problem

A closer look

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]

\[\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2 \]

Is our type system too restrictive?

- That’s a matter of opinion
- But it does reject programs that don’t get stuck

Example: \((\lambda x. (x (\lambda y. y)) (x 3)) \lambda z. x\)

- Does not get stuck: Evaluates to 3
- Does not type-check:
 - There is no \(\tau_1, \tau_2\) such that \(x : \tau_1 \vdash (x (\lambda y. y)) (x 3) : \tau_2\)
 because you have to pick one type for \(x\)

Always restrictive

Whether or not a program “gets stuck” is undecidable:

- If \(e\) has no constants or free variables, then \(e\) (3 4) or \(e x\) gets stuck if and only if \(e\) terminates (cf. the halting problem)

Old conclusion: “Strong types for weak minds”

- Need a back door (unchecked casts)

Modern conclusion: Unsafe constructs almost never worth the risk

- Make “false positives” (rejecting safe program) rare enough
 - Have compile-time resources for “fancy” type systems
- Make workarounds for false positives convenient enough
How does STLC measure up?

So far, STLC is sound:

▶ As language dictators, we decided cv and undefined variables were "bad" meaning neither values nor reducible

▶ Our type system is a conservative checker that an expression will never get stuck

But STLC is far too restrictive:

▶ In practice, just too often that it prevents safe and natural code reuse

▶ More fundamentally, it’s not even Turing-complete
 ▶ Turns out all (well-typed) programs terminate
 ▶ A good-to-know and useful property, but inappropriate for a general-purpose PL
 ▶ That’s okay: We will add more constructs and typing rules

Type Soundness

We will take a syntactic (operational) approach to soundness/safety

▶ The popular way since the early 1990s

Theorem (Type Safety): If $\cdot \vdash e : \tau$ then e diverges or $e \to^n v$

for an n and v such that $\cdot \vdash v : \tau$

▶ That is, if $\cdot \vdash e : \tau$, then e cannot get stuck

Proof: Next lecture