CIS 624: Structure of Programming Languages

Lecture 9 — Simply Typed Lambda Calculus

Boyana Norris
2017
Major new topic worthy of several lectures: Type systems

- Continue to use (CBV) Lambda Calculus as our core model
- But will soon enrich with other common primitives

This lecture:

- Motivation for type systems
- What a type system is designed to do and not do
 - Definition of stuckness, soundness, completeness, etc.
- The Simply-Typed Lambda Calculus
 - A basic and natural type system
 - Starting point for more expressiveness later

Next lecture:

- Prove Simply-Typed Lambda Calculus is sound
Review: L-R CBV Lambda Calculus

```
e ::= \lambda x. e \mid x \mid ee
v ::= \lambda x. e
```

Implicit systematic renaming of bound variables

- **\(\alpha\)-equivalence on expressions ("the same term")**

\[
e \rightarrow e'
\]

\[
(\lambda x. e) v \rightarrow e[v/x]
\]

\[
e_1 \rightarrow e'_1
e_2 \rightarrow e'_2
\]

\[
v e_2 \rightarrow v e'_2
\]

\[
e_1[e_2/x] = e_3
\]

\[
x[e/x] = e
\]

\[
y \ne x
\]

\[
y[e/x] = y
\]

\[
e_1[e/x] = e'_1
e_2[e/x] = e'_2
\]

\[
(e_1 e_2)[e/x] = e'_1 e'_2
\]

\[
e_1[e/x] = e'_1
\]

\[
y \ne x
\]

\[
y \notin FV(e)
\]

\[
(\lambda y. e_1)[e/x] = \lambda y. e'_1
\]
Naive thought: More powerful PLs are always better

▶ Be Turing Complete (e.g., Lambda Calculus or x86 Assembly)
▶ Have really flexible features (e.g., lambdas)
▶ Have conveniences to keep programs short

If this is the only metric, types are a step backward

▶ Whole point is to allow fewer programs
▶ A “filter” between abstract syntax and compiler/interpreter
 ▶ Fewer programs in language means less for a correct implementation
▶ So if types are a great idea, they must help with other desirable properties for a PL...
Why types? (Part 1)

1. Catch “simple” mistakes early, even for untested code
 ▶ Example: “if” applied to “mkpair”
 ▶ Even if some too-clever programmer meant to do it
 ▶ Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., $x \ n$)
 ▶ Ensure execution never gets to a “meaningless” state
 ▶ But “meaningless” depends on the semantics
 ▶ Each PL typically makes some things type errors (again being conservative) and others run-time errors

3. Enforce encapsulation (an abstract type)
 ▶ Clients can’t break invariants
 ▶ Clients can’t assume an implementation
 ▶ Requires safety, meaning no “stuck” states that corrupt run-time (e.g., C/C++)
 ▶ Can enforce encapsulation without static types, but types are a particularly nice way
4. Assuming well-typedness allows faster implementations
 ▶ Smaller interfaces enable optimizations
 ▶ Don’t have to check for impossible states
 ▶ Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading
 ▶ Have symbol lookup depend on operands’ types
 ▶ Only modestly interesting semantically
 ▶ Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions
 ▶ Often via a “type-and-effect” system
 ▶ Deep similarities in analyses suggest type systems a good way
to think-about/define/prove what you’re checking
 ▶ Uncaught exceptions, tainted data, non-termination, IO
performed, data races, dangling pointers, ...

We’ll focus on (1), (2), and (3) and maybe (6)
What is a type system?

Er, uh, you know it when you see it. Some clues:

- A decidable (?) judgment for classifying programs
 - E.g., $e_1 + e_2$ has type int if e_1, e_2 have type int (else no type)

- A sound (?) abstraction of computation
 - E.g., if $e_1 + e_2$ has type int, then evaluation produces an int (with caveats!)

- Fairly syntax directed
 - Non-example (?): e terminates within 100 steps

- Particularly fuzzy distinctions with abstract interpretation
 - Possible topic for a later lecture
 - Often a more natural framework for flow-sensitive properties
 - Types often more natural for higher-order programs

This is a CS-centric, PL-centric view. Foundational type theory has more rigorous answers

- Later lecture: Typed PLs are like proof systems for logics
Plan for the next few weeks

- Simply typed λ calculus
- (Syntactic) Type Soundness (i.e., safety)
- Extensions (pairs, sums, lists, recursion)

Break for the Curry-Howard isomorphism; continuations

- Subtyping
- Polymorphic types (generics)
- Recursive types
- Abstract types
- Effect systems

Omitted: Type inference
Adding constants

Enrich the Lambda Calculus with integer constants:

- Not strictly necessary, but makes types seem more natural

\[
\begin{align*}
e & ::= \lambda x. e \mid x \mid ee \mid c \\
v & ::= \lambda x. e \mid c
\end{align*}
\]

No new operational-semantics rules since constants are values

We could add + and other primitives

- Then we would need new rules (e.g., 3 small-step for +)
- Alternately, parameterize “programs” by primitives: \(\lambda plus. \lambda times. \ldots e \)
 - Like Pervasives in OCaml
 - A great way to keep language definitions small
Key issue: can a program “get stuck” (reach a “bad” state)?

- Definition: e is stuck if e is not a value and there is no e' such that $e \rightarrow e'$

- Definition: e can get stuck if there exists an e' such that $e \rightarrow^* e'$ and e' is stuck
 - In a deterministic language, e “gets stuck”

Most people don’t appreciate that stuckness depends on the operational semantics
 - Inherent given the definitions above
What’s stuck?

Given our language, what are the set of stuck expressions?

- Note: Explicitly defining the stuck states is unusual

\[e ::= \lambda x. e \mid x \mid e \ e \mid c \]

\[v ::= \lambda x. e \mid c \]

\[
(\lambda x. e) \ v \rightarrow e[v/x]
\]

\[
\frac{e_1 \rightarrow e_1'}{e_1 \ e_2 \rightarrow e_1' \ e_2}
\]

\[
\frac{e_2 \rightarrow e_2'}{v \ e_2 \rightarrow v \ e_2'}
\]

(Hint: The full set is recursively defined.)

\[S ::= x \mid c \ v \mid S \ e \mid v \ S \]

Note: Can have fewer stuck states if we add more rules

- Example: \[c \ v \rightarrow v \]

- In unsafe languages, stuck states can set the computer on fire
Soundness and Completeness

A *type system* is a judgment for classifying programs

- “accepts” a program if some complete derivation gives it a type, else “rejects”

A *sound* type system never accepts a program that can get stuck

- No false negatives

A *complete* type system never rejects a program that can’t get stuck

- No false positives

It is typically *undecidable* whether a stuck state can be reachable

- Corollary: If we want an *algorithm* for deciding if a type system accepts a program, then the type system cannot be sound and complete
- We’ll choose soundness, try to reduce false positives in practice
Wrong Attempt

\[\tau ::= \text{int} \mid \text{fn} \]

\[\vdash e : \tau \]

\[\vdash \lambda x. e : \text{fn} \quad \vdash c : \text{int} \]

\[\vdash e_1 : \text{fn} \quad \vdash e_2 : \text{int} \]

\[\vdash e_1 e_2 : \text{int} \]

1. NO: can get stuck, e.g., \((\lambda x. y) 3\)

2. NO: too restrictive, e.g., \((\lambda x. x 3) (\lambda y. y)\)

3. NO: types not preserved, e.g., \((\lambda x. \lambda y. y) 3\)
Getting it right

1. Need to type-check function bodies, which have free variables
2. Need to classify functions using argument and result types

For (1): \(\Gamma ::= \cdot \mid \Gamma, x : \tau \) and \(\Gamma \vdash e : \tau \)
 - Require whole program to type-check under empty context \(\cdot \)

For (2): \(\tau ::= \text{int} \mid \tau \rightarrow \tau \)
 - An infinite number of types:
 \(\text{int} \rightarrow \text{int}, (\text{int} \rightarrow \text{int}) \rightarrow \text{int}, \text{int} \rightarrow (\text{int} \rightarrow \text{int}), \ldots \)

Concrete syntax note: \(\rightarrow \) is right-associative, so
\(\tau_1 \rightarrow \tau_2 \rightarrow \tau_3 \) is \(\tau_1 \rightarrow (\tau_2 \rightarrow \tau_3) \)
The function-introduction rule is the interesting one...
A closer look

\[
\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2}
\]

Where did \(\tau_1 \) come from?

- Our rule “inferred” or “guessed” it
- To be syntax directed, change \(\lambda x. e \) to \(\lambda x : \tau. e \) and use that \(\tau \)

Can think of “adding \(x \)” as shadowing or requiring \(x \not\in \text{Dom}(\Gamma) \)

- Systematic renaming (\(\alpha \)-conversion) ensures \(x \not\in \text{Dom}(\Gamma) \) is not a problem
A closer look

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \]
\[\Gamma \vdash \lambda x. \ e : \tau_1 \rightarrow \tau_2 \]

Is our type system too restrictive?

- That’s a matter of opinion
- But it does reject programs that don’t get stuck

Example: \((\lambda x. \ (x \ (\lambda y. \ y)) \ (x \ 3)) \ \lambda z. \ z\)

- Does not get stuck: Evaluates to 3
- Does not type-check:
 - There is no \(\tau_1, \tau_2\) such that \(x : \tau_1 \vdash (x \ (\lambda y. \ y)) \ (x \ 3) : \tau_2\)
 because you have to pick one type for \(x\)
Always restrictive

Whether or not a program “gets stuck” is undecidable:

- If e has no constants or free variables, then $e\ (3\ 4)$ or $e\ x$
gets stuck if and only if e terminates (cf. the halting problem)

Old conclusion: “Strong types for weak minds”

- Need a back door (unchecked casts)

Modern conclusion: Unsafe constructs almost never worth the risk

- Make “false positives” (rejecting safe program) rare enough
 - Have compile-time resources for “fancy” type systems
- Make workarounds for false positives convenient enough
How does STLC measure up?

So far, STLC is sound:

- As language dictators, we decided \(c \) \(\nu \) and undefined variables were “bad” meaning neither values nor reducible
- Our type system is a conservative checker that an expression will never get stuck

But STLC is far too restrictive:

- In practice, just too often that it prevents safe and natural code reuse
- More fundamentally, it’s not even Turing-complete
 - Turns out all (well-typed) programs terminate
 - A good-to-know and useful property, but inappropriate for a general-purpose PL
 - That’s okay: We will add more constructs and typing rules
Type Soundness

We will take a *syntactic* (operational) approach to soundness/safety

- The popular way since the early 1990s

Theorem (Type Safety): If $\cdot \vdash e : \tau$ then e diverges or $e \rightarrow^n v$
for an n and v such that $\cdot \vdash v : \tau$

- That is, if $\cdot \vdash e : \tau$, then e cannot get stuck

Proof: Next lecture