Looking back, looking forward

This is the last lecture using IMP (hooray!). Done:
- Abstract syntax
- Operational semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- “Pseudo-denotational” semantics

Now:
- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next lecture: Local variables, lambda-calculus

Packet Filters

Example: Firewall

Packet Filters

A very simple view of packet filters:
- Some bits come in off the wire
- Some application(s) want the “packet” and some do not (e.g., port number)
- For safety, only the O/S can access the wire
- For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:
1. Do not corrupt kernel data structures
2. Terminate (within a time bound)
3. Run fast (the whole point)

Should we download some C/assembly code?
Should we make up a language and “hope” it has these properties?

Language-based approaches

1. Interpret a language
 - clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface
2. Translate a language into C/assembly
 - clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface
3. Require a conservative subset of C/assembly
 - normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we’ll get to (3)
A General Pattern

Packet filters move the code to the data rather than data to the code

General reasons: performance, security, other?

Other examples:
- Query languages
- Active networks
- Client-side web scripts (Javascript)

Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer
- Semantics equivalence (we change the language):
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Note: Proofs may seem easy with the right semantics and lemmas
- (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more interesting things

What is equivalence?

Equivalence depends on what is observable!
- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
 - All (almost all?) variables have the same value
- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?
 - Is “runs within 10ms of each other” important?
- Syntactic equivalence (perhaps with renaming)
 - Too strict to be interesting?

In PL, equivalence most often means total I/O equivalence

Program Example: Strength Reduction

Motivation: Strength reduction
- A common compiler optimization due to architecture issues

Theorem: If $e'\!$ has a subexpression of the form $e * 2$, then $H; e'\downarrow c'$ if and only if $H ; e + e \downarrow c$

Proof sketch:
- Prove separately for each direction
- Invert the assumed derivation, use hypotheses plus a little math to derive what we need
- Hmm, doesn’t use induction. That’s because this theorem isn’t very useful...

Program Example: Nested Strength Reduction

Theorem: If e' has a subexpression of the form $e * 2$, then $H; e'\downarrow c'$ if and only if $H ; C[e + e] \downarrow c'$

where e'' is e' with $e * 2$ replaced with $e + e$

First some useful metanotation:

\[
C ::= [\cdot] \mid C + e \mid e + C \mid C * e \mid e * C
\]

$C[e]$ is “C with e in the hole” (inductive definition of “stapling”)

Crisper statement of theorem:

\[
H ; C[e * 2] \downarrow c' \quad \text{if and only if} \quad H ; C[e + e] \downarrow c'
\]

Proof sketch: By induction on structure (“syntax height”) of C
- The base case ($C = [\cdot]$) follows from our previous proof
- The rest is a long, tedious, (and instructive!) induction

Proof reuse

As we cannot emphasize enough, proving is just like programming

The proof of nested strength reduction had nothing to do with $e * 2$ and $e + e$ except in the base case where we used our previous theorem

A much more useful theorem would parameterize over the base case so that we could get the “nested X” theorem for any appropriate X:

\[
\text{if } (H ; e_1 \downarrow c \quad \text{if and only if} \quad H ; e_2 \downarrow c),
\quad \text{then} \quad (H ; C[e_1] \downarrow c' \quad \text{if and only if} \quad H ; C[e_2] \downarrow c')
\]

The proof is identical except the base case is “by assumption”
Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

(a) For all n, if \(H ; s_1 ; (s_2 ; s_3) \rightarrow^n H' \); skip then there exist \(H'' \) and \(n' \) such that \(H ; (s_1 ; s_2); s_3 \rightarrow^{n'} H'' \); skip and \(H'' \) (ans) = \(H' \) (ans).

(b) If for all n there exist \(H' \) and \(s' \) such that \(H ; s_1; (s_2 ; s_3) \rightarrow^n H' \); skip and \(s' \), then for all \(n \) there exist \(H'' \) and \(s'' \) such that \(H ; (s_1; s_2); s_3 \rightarrow^{n''} H'' \); skip and \(H'' \) (ans) = \(H' \) (ans).

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever is easier.

Language Equivalence Example

IMP w/o multiply large-step:

<table>
<thead>
<tr>
<th>CONST</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H ; c \downarrow c)</td>
<td>(H ; x \downarrow H(x))</td>
</tr>
</tbody>
</table>

ADD \(H ; e_1 \downarrow c_1 \) \(H ; e_2 \downarrow c_2 \)

IMP w/o multiply small-step:

<table>
<thead>
<tr>
<th>SVAR</th>
<th>SADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H ; x \rightarrow H(x))</td>
<td>(H ; c_1 + c_2 \rightarrow c_1 + c_2)</td>
</tr>
<tr>
<td>(H ; e_1 \rightarrow e'_1 \rightarrow e'_2 \rightarrow e_2)</td>
<td>(H ; e_1 \rightarrow e'_1 \rightarrow e'_2 \rightarrow e_2)</td>
</tr>
</tbody>
</table>

Theorem: Semantics are equivalent: \(H ; c \downarrow c \) if and only if \(H ; e \rightarrow^* c \)

Proof: We prove the two directions separately...

Proof, part 1

First assume \(H ; e \downarrow c \) and show \(\exists n. H ; e \rightarrow^n c \)

Lemma (prove it!): If \(H ; e \rightarrow^m e' \), then \(H ; e_1 + e \rightarrow^m e_1 + e' \) and \(H ; e + e_2 \rightarrow^m e' + e_2 \).

- Proof by induction on \(n \)
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of \(H ; e \downarrow c \):

- CONST: Derivation with CONST implies \(e = c \), and we can derive \(H ; c \rightarrow^0 c \)
- VAR: Derivation with VAR implies \(e = x \) for some \(x \) where \(H(x) = c \), so derive \(H ; e \rightarrow^1 c \) with SVAR
- ADD: ...

Proof, part 2

Now assume \(\exists n. H ; e \rightarrow^m c \) and show \(H ; e \downarrow c \).

Proof by induction on \(n \):

- \(n = 0 \): \(e \) is \(c \) and CONST lets us derive \(H ; c \downarrow c \)
- \(n > 0 \): (Clever: break into first step and remaining ones)
 \(\exists e'. H ; e \rightarrow e' \) and \(H ; e' \rightarrow^{m-1} c \).

By induction \(H ; e' \downarrow c \).

So this lemma suffices: If \(H ; e \rightarrow e' \) and \(H ; e' \downarrow c \), then \(H ; e \downarrow c \).

Prove the lemma by induction on derivation of \(H ; e \rightarrow e' \):

- SVAR: ...
- SADD: ...
- SLEFT: ...
- SRIGHT: ...

Part 2, key lemma

Lemma: If \(H ; e \rightarrow e' \) and \(H ; e' \downarrow c \), then \(H ; e \downarrow c \).

Prove the lemma by induction on derivation of \(H ; e \rightarrow e' \):

- SVAR: Derivation with SVAR implies \(e \) is some \(x \) and \(e' = H(x) = c \), so derive, by VAR, \(H ; x \downarrow H(x) \).
- SADD: Derivation with SADD implies \(e \) is some \(c_1 + c_2 \) and \(e' = c_1 + c_2 \) is \(c \), so derive, by ADD and two CONST, \(H ; c_1 + c_2 \rightarrow c_1 + c_2 \).
- SLEFT: Derivation with SLEFT implies \(e = e_1 + e_2 \) and \(e' = e'_1 + e'_2 \) and \(H ; e_1 \rightarrow^* e'_1 \) for some \(e_1, e_2, e'_1 \).
 Since \(e' = e'_1 + e'_2 \) inverting assumption \(H ; e' \downarrow c \) gives \(H ; e'_1 \downarrow c_1 \), \(H ; e'_2 \downarrow c_2 \) and \(c = c_1 + c_2 \).
 Applying the induction hypothesis to \(H ; e_1 \rightarrow^* e'_1 \) and \(H ; e' \downarrow c_1 \), \(H ; e'_1 \downarrow c_1 \) gives \(H ; e_1 \downarrow c_1 \).
 So use ADD, \(H ; e_1 \downarrow c_1 \), and \(H ; e_2 \downarrow c_2 \) to derive \(H ; e_1 + e_2 \downarrow c_1 + c_2 \).
- SRIGHT: Analogous to SLEFT
The cool part, redux

Step through the sleft case more visually:

By assumption, we must have derivations that look like this:

\[
\frac{H; e_1 \rightarrow e_1'}{H; e_1 + e_2 \rightarrow e_1' + e_2} \quad \frac{H; e_1' \downarrow c_1}{H; e_1 + e_2 \downarrow c_1 + c_2} \quad H; e_2 \downarrow c_2
\]

Grab the hypothesis from the left and the left hypothesis from the right and use induction to get \(H; e_1 \downarrow c_1 \).

Now go grab the one hypothesis we haven’t used yet and combine it with our inductive result to derive our answer:

\[
\frac{H; e_1 \downarrow c_1 \quad H; e_2 \downarrow c_2}{H; e_1 + e_2 \downarrow c_1 + c_2}
\]

Conclusions

- Equivalence is a subtle concept
- Proofs “seem obvious” only when the definitions are right
- Some other language-equivalence claims:

 Replace WHILE rule with

 \[
 \frac{H; e \downarrow c \quad c \leq 0}{H; \text{while } e \rightarrow H; \text{skip}} \quad \frac{H; e \downarrow c \quad c > 0}{H; \text{while } e \rightarrow H; \text{while } e}
 \]

 Equivalent to our original language

 Change syntax of heap and replace ASSIGN and VAR rules with

 \[
 \frac{H; x := e \rightarrow H; x \mapsto e; \text{skip}}{H; e \downarrow c \quad H; x \downarrow c}
 \]

 NOT equivalent to our original language

A nice payoff

Theorem: The small-step semantics is deterministic:

if \(H; e \rightarrow^* c_1 \) and \(H; e \rightarrow^* c_2 \), then \(c_1 = c_2 \)

Not obvious (see SLEFT and SRIGHT), nor do I know a direct proof

- Given \(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)\) there are many execution sequences, which all produce 36 but with different intermediate expressions

Proof:

- Large-step evaluation is deterministic (easy induction proof)
- Small-step and and large-step are equivalent (just proved that)
- So small-step is deterministic
- Convince yourself a deterministic and a nondeterministic semantics cannot be equivalent