CIS 624: Structure of Programming Languages

Lecture 3 — Operational Semantics

Boyana Norris
2017
Where we are

- Done: OCaml tutorial, “IMP” syntax, structural induction
- Now: Operational semantics for our little “IMP” language
 - Most of what you need for Homework 1
 - (But Problem 4 requires proofs over semantics)
IMP’s abstract syntax is defined inductively:

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
 e &::= c \mid x \mid e + e \mid e \ast e \\
 (c &\in \{\ldots, -2, -1, 0, 1, 2, \ldots \}) \\
 (x &\in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots \})
\end{align*}
\]

We haven’t yet said what programs *mean*! (Syntax is boring)

Encode our “social understanding” about variables and control flow
Outline

- Semantics for expressions
 1. Informal idea; the need for heaps
 2. Definition of heaps
 3. The evaluation *judgment* (a relation form)
 4. The evaluation *inference rules* (the relation definition)
 5. Using inference rules
 - *Derivation trees* as interpreters
 - Or as *proofs* about expressions
 6. *Metatheory*: Proofs about the semantics

- Then semantics for statements
 - ...
Informal idea

Given e, what c does e evaluate to?

$$1 + 2 \quad x + 2$$

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

- Could use partial functions, but then $\exists H$ and e for which there is no c

We’ll define a relation over triples of H, e, and c

- Will turn out to be function if we view H and e as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)
Heaps

\[H ::= \cdot \mid H, x \mapsto c \]

A lookup-function for heaps:

\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot
\end{cases}
\]

- Last case avoids “errors” (makes function total)

“What heap to use” will arise in the semantics of statements

- For expression evaluation, “we are given an H”
The judgment

We will write: \[H ; e \Downarrow c \]

to mean, “\(e\) evaluates to \(c\) under heap \(H\)”

It is just a relation on triples of the form \((H, e, c)\)

We just made up metasyntax \(H ; e \Downarrow c\) to follow PL convention and to distinguish it from other relations

We can write: \(., x \mapsto 3 ; x + y \Downarrow 3\), which will turn out to be \textit{true}

(this triple will be in the relation we define)

Or: \(., x \mapsto 3 ; x + y \Downarrow 6\), which will turn out to be \textit{false}

(this triple will not be in the relation we define)
Inference rules

CONST

\[
H ; c \downarrow c
\]

VAR

\[
H ; x \downarrow H(x)
\]

ADD

\[
\begin{align*}
H & ; e_1 \downarrow c_1 \\
H & ; e_2 \downarrow c_2 \\
\hline
H & ; e_1 + e_2 \downarrow c_1 + c_2
\end{align*}
\]

MULT

\[
\begin{align*}
H & ; e_1 \downarrow c_1 \\
H & ; e_2 \downarrow c_2 \\
\hline
H & ; e_1 * e_2 \downarrow c_1 * c_2
\end{align*}
\]

Top: *hypotheses*
Bottom: *conclusion* (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a *schema* you “instantiate consistently”

- So rules “work” “for all” \(H, c, e_1\), etc.
- But “each” \(e_1\) has to be the “same” expression
Instantiating rules

Example instantiation:

\[
\cdot, y \mapsto 4 ; 3 + y \downarrow 7 \\
\cdot, y \mapsto 4 ; 5 \downarrow 5 \\
\cdot, y \mapsto 4 ; (3 + y) + 5 \downarrow 12
\]

Instantiates:

\[
\begin{array}{c}
\text{ADD} \\
H ; e_1 \downarrow c_1 & H ; e_2 \downarrow c_2 \\
\hline
H \ ; e_1 + e_2 \downarrow c_1 + c_2
\end{array}
\]

with

\[
H = \cdot, y \mapsto 4 \\
e_1 = (3 + y) \\
c_1 = 7 \\
e_2 = 5 \\
c_2 = 5
\]
Derivations

A *complete* derivation is a tree of instantiations with *axioms* at the leaves.

Example:

\[\cdot, y \mapsto 4 ; 3 \Downarrow 3 \]
\[\cdot, y \mapsto 4 ; y \Downarrow 4 \]
\[\cdot, y \mapsto 4 ; 3 + y \Downarrow 7 \]
\[\cdot, y \mapsto 4 ; (3 + y) + 5 \Downarrow 12 \]

By definition, \(H ; e \Downarrow c \) if there exists a derivation with \(H ; e \Downarrow c \) at the root.
So what relation do our inference rules define?

- Start with empty relation (no triples) R_0

- Let R_i be R_{i-1} union all $H; e \Downarrow c$ such that we can instantiate some inference rule to have conclusion $H; e \Downarrow c$ and all hypotheses in R_{i-1}
 - So R_i is all triples at the bottom of height-j complete derivations for $j \leq i$

- R_∞ is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: R_∞ is the smallest relation closed under the inference rules

Boyana Norris
What are these things?

We can view the inference rules as defining an *interpreter*

- Complete derivation shows recursive calls to the “evaluate expression” function
 - Recursive calls from conclusion to hypotheses
 - *Syntax-directed* means the interpreter need not “search”

- See OCaml code in Homework 1

Or we can view the inference rules as defining a *proof system*

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions
Some theorems

- Progress: For all H and e, there exists a c such that $H ; e \downarrow c$

- Determinacy: For all H and e, there is at most one c such that $H ; e \downarrow c$

We rigged it that way...

what would division, undefined-variables, or gettime() do?

Proofs are by induction on the the structure (i.e., height) of the expression e
On to statements

A statement does not produce a constant
It produces a new, possibly-different heap.
 ▶ If it terminates

We could define $H_1 ; s \downarrow H_2$
 ▶ Would be a partial function from H_1 and s to H_2
 ▶ Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”

\[
H_1 ; s_1 \rightarrow H_2 ; s_2
\]
Statement semantics

\[H_1 ; s_1 \rightarrow H_2 ; s_2 \]

ASSIGN

\[
\frac{H ; e \Downarrow c}{H ; x := e \rightarrow H, x \mapsto c ; \text{skip}}
\]

SEQ1

\[
\frac{H ; \text{skip} ; s \rightarrow H ; s}{H ; \text{seq1}}
\]

SEQ2

\[
\frac{H ; s_1 \rightarrow H' ; s'_1}{H ; s_1 ; s_2 \rightarrow H' ; s'_1 ; s_2}
\]

IF1

\[
\frac{H ; e \Downarrow c \quad c > 0}{H ; \text{if } e s_1 s_2 \rightarrow H ; s_1}
\]

IF2

\[
\frac{H ; e \Downarrow c \quad c \leq 0}{H ; \text{if } e s_1 s_2 \rightarrow H ; s_2}
\]
Statement semantics cont’d

What about \textbf{while }e~s \textbf{(do }s \textbf{ and loop if } e > 0)\textbf{)?}

\begin{align*}
\text{WHILE} \\
H ; \text{while } e~s \rightarrow H ; \text{if } e (s; \text{while } e~s) \text{ skip }
\end{align*}

Many other equivalent definitions possible
Program semantics

Defined \(H ; s \rightarrow H' ; s' \), but what does “s” mean/do?

Our machine iterates: \(H_1 ; s_1 \rightarrow H_2 ; s_2 \rightarrow H_3 ; s_3 \ldots \),
with each step justified by a complete derivation using our
single-step statement semantics

Let \(H_1 ; s_1 \rightarrow^n H_2 ; s_2 \) mean “becomes after n steps”

Let \(H_1 ; s_1 \rightarrow^* H_2 ; s_2 \) mean “becomes after 0 or more steps”

Pick a special “answer” variable \(\text{ans} \)

The program \(s \) produces \(c \) if \(\cdot ; s \rightarrow^* H ; \text{skip} \) and \(H(\text{ans}) = c \)

Does every \(s \) produce a \(c \)?
Example program execution

\[x := 3; (y := 1; \textbf{while} \ x \ (y := y * x; x := x - 1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \ast x; x := x - 1) \).

\[\cdot; x := 3; y := 1; \textbf{while} \ x \ s \]

\[\rightarrow \cdot, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while} \ x \ s \]

\[\rightarrow \cdot, x \mapsto 3; y := 1; \textbf{while} \ x \ s \]

\[\rightarrow^2 \cdot, x \mapsto 3, y \mapsto 1; \textbf{while} \ x \ s \]

\[\rightarrow \cdot, x \mapsto 3, y \mapsto 1; \textbf{if} \ x \ (s; \textbf{while} \ x \ s) \ \textbf{skip} \]

\[\rightarrow \cdot, x \mapsto 3, y \mapsto 1; y := y \ast x; x := x - 1; \textbf{while} \ x \ s \]
Continued...

\[\rightarrow^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x - 1; \textbf{while} x \ s \]

\[\rightarrow^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \textbf{while} x \ s \]

\[\rightarrow \ldots, y \mapsto 3, x \mapsto 2; \textbf{if} x (s; \textbf{while} x \ s) \textbf{ skip} \]

\[\ldots \]

\[\rightarrow \ldots, y \mapsto 6, x \mapsto 0; \textbf{skip} \]
Where we are

Defined $H; e \Downarrow c$ and $H; s \rightarrow H'; s'$ and extended the latter to give s a meaning

- The way we did expressions is "large-step operational semantics"
- The way we did statements is "small-step operational semantics"
- So now you have seen both

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means

- Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence

- But we defined IMP to have no errors
- And expressions never diverge
Establishing Properties

We can prove a property of a terminating program by “running” it.

Example: Our last program terminates with \(x \) holding \(0 \).

We can prove a program diverges, i.e., for all \(H \) and \(n \),
\[\cdot ; s \rightarrow^n H ; \text{skip} \] cannot be derived.

Example: \texttt{while 1 skip}

By induction on \(n \), but requires a \textit{stronger induction hypothesis}.
More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If \(H \) and \(s \) have no negative constants and \(H ; s \rightarrow^* H' ; s' \), then \(H' \) and \(s' \) have no negative constants.

Example: If for all \(H \), we know \(s_1 \) and \(s_2 \) terminate, then for all \(H \), we know \(H ; (s_1 ; s_2) \) terminates.