Finally, some formal PL content

For our first formal language, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

“A program is a statement s, which is defined as follows”

$$
\begin{align*}
 s &::= \operatorname{skip} \mid x := e \mid s_1 ; s_2 \mid \operatorname{if} e \ s_1 \ s_2 \mid \operatorname{while} e \ s \\
 e &::= c \mid x \mid e + e \mid e \ast e
\end{align*}
$$

$(c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\})$

$(x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})$

Syntax Definition

$s ::= \operatorname{skip} \mid x := e \mid s_1 ; s_2 \mid \operatorname{if} e \ s_1 \ s_2 \mid \operatorname{while} e \ s$

$e ::= c \mid x \mid e + e \mid e \ast e$

Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: if x skip $y := 42 ; x := y$

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

▶ Trees are our “truth” with strings as a “convenient notation”

if x skip ($y := 42 ; x := y$) versus (if x skip $y := 42$) ; $x := y$

Comparison to ML

if x skip ($y := 42 ; x := y$) versus (if x skip $y := 42$) ; $x := y$

Boyana Norris CIS 624 2017, Lecture 2 5

Examples

$$
\begin{align*}
 s &::= \operatorname{skip} \mid x := e \mid s_1 ; s_2 \mid \operatorname{if} e \ s_1 \ s_2 \mid \operatorname{while} e \ s \\
 e &::= c \mid x \mid e + e \mid e \ast e
\end{align*}
$$

$s ::= \operatorname{skip} \mid x := e \mid s_1 ; s_2 \mid \operatorname{if} e \ s_1 \ s_2 \mid \operatorname{while} e \ s$

$e ::= c \mid x \mid e + e \mid e \ast e$

Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: if x skip $y := 42 ; x := y$

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

▶ Trees are our “truth” with strings as a “convenient notation”

if x skip ($y := 42 ; x := y$) versus (if x skip $y := 42$) ; $x := y$
Last word on concrete syntax

Converting a string into a tree is parsing

Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design

- Always trivial if you require enough parentheses or keywords
 - Extreme case: LISP, 1960s; Scheme, 1970s
 - Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

- Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean

Review of Mathematical Induction

A proof by induction that the property \(P(n) \) holds for \(n \in \mathbb{N} \) involves these steps:

- Prove directly that \(P \) is correct for the initial value of \(n \) (for most examples you will see this is zero or one). This is called the base case.
- Assume for some value \(k \) that \(P(k) \) is correct. This is called the induction hypothesis (IH). We will now prove directly that \(P(k) \Rightarrow P(k+1) \). That means prove directly that \(P(k+1) \) is correct by using the fact that \(P(k) \) is correct. This is called the induction step.

Our First Theorem

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

There exist expressions with three constants.

Pedantic Proof: Consider \(e = 1 + (2 + 3) \). Showing \(e \in E_3 \) suffices because \(E_3 \subseteq E \). Showing \(2 + 3 \in E_2 \) and \(1 \in E_2 \) suffices...

PL-style proof: Consider \(e = 1 + (2 + 3) \) and definition of \(E \).

Theorem 2: All expressions have at least one constant or variable.
Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on $i > 0$, for all $e \in E_i$, e has ≥ 1 constant or variable.

- Base: $i = 1$ implies $E_i = c, x$, which has at least one constant or variable.
- Inductive: $i > 1$. Consider arbitrary $e \in E_i$ by cases:
 - $e \in E_{i-1}$...
 - $e = c$...
 - $e = x$...
 - $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1}$...
 - $e = e_1 \ast e_2$ where $e_1, e_2 \in E_{i-1}$...

A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an expression) e. Cases:

- c ...
- x ...
- $e_1 + e_2$...
- $e_1 \ast e_2$...

Structural induction invokes the induction hypothesis on smaller terms. It is equivalent to the pedantic proof, and more convenient in PL.