CIS 624: Structure of Programming Languages

Lecture 18 — Recursive Types

Boyana Norris
2017
Where are we

- System F gave us type abstraction
 - code reuse
 - strong abstractions
 - different from real languages (like ML), but the right foundation

- This lecture: Recursive Types (different use of type variables)
 - For building unbounded data structures
 - Turing-completeness without a fix primitive

- Future lecture (?): Existential types (dual to universal types)
 - First-class abstract types
 - Closely related to closures and objects

- Future lecture (?): Type-and-effect systems
Recursive Types

We could add list types (\text{list}(\tau)) and primitives ([], ::, match), but we want user-defined recursive types

Intuition:

\texttt{type intlist = Empty | Cons int \times intlist}

Which is roughly:

\texttt{type intlist = unit + (int \times intlist)}

- Seems like a named type is unavoidable
 - But that’s what we thought with let rec and we used fix

- Analogously to \texttt{fix \lambda x. e}, we’ll introduce \(\mu \alpha. \tau \)
 - Each \(\alpha \) “stands for” entire \(\mu \alpha. \tau \)
Mighty μ

In τ, type variable α stands for $\mu\alpha.\tau$, bound by μ

Examples (of many possible encodings):
- int list (finite or infinite): $\mu\alpha.\text{unit} + (\text{int} \times \alpha)$
- int list (infinite “stream”): $\mu\alpha.\text{int} \times \alpha$
 - Need laziness (thunking) or mutation to build such a thing
 - Under CBV, can build values of type $\mu\alpha.\text{unit} \rightarrow (\text{int} \times \alpha)$
- int list list: $\mu\alpha.\text{unit} + ((\mu\beta.\text{unit} + (\text{int} \times \beta)) \times \alpha)$

Examples where type variables appear multiple times:
- int tree (data at nodes): $\mu\alpha.\text{unit} + (\text{int} \times \alpha \times \alpha)$
- int tree (data at leaves): $\mu\alpha.\text{int} + (\alpha \times \alpha)$
Using μ types

How do we build and use int lists $($\(\mu\alpha.\text{unit} + \text{(int } \ast \alpha)\))$?

We would like:

- empty list $=$ $A(())$
 Has type: $\mu\alpha.\text{unit} + (\text{int } \ast \alpha)$

- cons $=$ $\lambda x:\text{int}. \lambda y:\(\mu\alpha.\text{unit} + (\text{int } \ast \alpha))$. $B((x, y))$
 Has type: $\text{int} \rightarrow (\mu\alpha.\text{unit} + (\text{int } \ast \alpha)) \rightarrow (\mu\alpha.\text{unit} + (\text{int } \ast \alpha))$

- head $=$
 $\lambda x:(\mu\alpha.\text{unit} + (\text{int } \ast \alpha))$. match x with A. $A(())$ | B. $B(y.1)$
 Has type: $(\mu\alpha.\text{unit} + (\text{int } \ast \alpha)) \rightarrow (\text{unit } \ast \text{int})$

- tail $=$
 $\lambda x:(\mu\alpha.\text{unit} + (\text{int } \ast \alpha))$. match x with A. $A(())$ | B. $B(y.2)$
 Has type: $(\mu\alpha.\text{unit} + (\text{int } \ast \alpha)) \rightarrow (\text{unit } \ast \mu\alpha.\text{unit} + (\text{int } \ast \alpha))$

But our typing rules allow none of this (yet)
Using \(\mu \) types (continued)

For empty list = \(A(()) \), one typing rule applies:

\[
\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2 \\
\Delta; \Gamma \vdash A(e) : \tau_1 + \tau_2
\]

So we could show

\[
\Delta; \Gamma \vdash A(()) : \text{unit} + (\text{int} \ast (\mu \alpha.\text{unit} + (\text{int} \ast \alpha)))
\]

(since \(\text{FTV}(\text{int} \ast \mu \alpha.\text{unit} + (\text{int} \ast \alpha)) = \emptyset \subseteq \Delta \))

But we want \(\mu \alpha.\text{unit} + (\text{int} \ast \alpha) \)

Notice: \(\text{unit} + (\text{int} \ast (\mu \alpha.\text{unit} + (\text{int} \ast \alpha))) \) is

\[(\text{unit} + (\text{int} \ast \alpha))(\mu \alpha.\text{unit} + (\text{int} \ast \alpha))/\alpha]\]

The key: Subsumption — recursive types are equal to their “unfolding” or “unfolding” (equi-recursive).
Return of subtyping

Can use \(\Gamma \vdash e : \tau' \quad \tau' \leq \tau \) and these subtyping rules:

FOLD

\[
\tau[\langle \mu \alpha.\tau \rangle/\alpha] \leq \mu \alpha.\tau
\]

UNFOLD

\[
\mu \alpha.\tau \leq \tau[\langle \mu \alpha.\tau \rangle/\alpha]
\]

Subtyping can “fold” or “unfold” a recursive type

\[
\mu \alpha.\tau \quad \tau[\langle \mu \alpha.\tau \rangle/\alpha]
\]

\[
\text{fold}[\mu \alpha.\tau] \quad \text{unfold}[\mu \alpha.\tau]
\]
Folding and unfolding (cont.)

The fold and unfold maps are provided as primitives by the language.

Can now give empty-list, cons, and head the types we want: Constructors use fold, destructors use unfold

Notice how little we did: One new form of type \((\mu \alpha. \tau)\) and two new subtyping rules.
Metatheory

What is the relation between the type $\mu \alpha. \tau$ and its one-step unfolding?

- Equi-recursive (implicit) approach (subsumption): takes a recursive type and its unfolding as definitionally equal – interchangeable in all contexts (it’s the type checker’s responsibility to make sure that a term of one type will be allowed as an argument to a function expecting the other). Example: http://whiley.org/2011/02/16/minimising-recursive-data-types/.

- Iso-recursive (explicit) approach: takes a recursive type and its unfolding as different, but isomorphic.
Metatheory (cont.)

Despite additions being minimal, must reconsider how recursive types change STLC and System F:

- Erasure (no run-time effect): unchanged

- Termination: changed!
 - $\beta x: \mu \alpha. \alpha \rightarrow \alpha. x x (\lambda x: \mu \alpha. \alpha \rightarrow \alpha. x x)$
 - In fact, we’re now Turing-complete without fix (actually, can type-check every closed λ term)

- Safety: still safe, but Canonical Forms harder

- Inference: Shockingly efficient for “STLC plus μ”
 (A great contribution of PL theory with applications in OO and XML-processing languages)
Syntax-directed μ types

(Equi-recursive) recursive types via subsumption “seem magical”

Instead, we can make programmers tell the type-checker where/how to fold and unfold

“Iso-recursive” types: remove subtyping and add expressions:

$$
\begin{align*}
\tau & ::= \cdots | \mu \alpha. \tau \\
e & ::= \cdots | \text{fold}_{\mu \alpha. \tau} e | \text{unfold} e \\
v & ::= \cdots | \text{fold}_{\mu \alpha. \tau} v \\
\end{align*}
$$

$$
\begin{align*}
e & \rightarrow e' \\
\text{fold}_{\mu \alpha. \tau} e & \rightarrow \text{fold}_{\mu \alpha. \tau} e' \\
\text{unfold} e & \rightarrow \text{unfold} e' \\
\text{unfold} (\text{fold}_{\mu \alpha. \tau} v) & \rightarrow v \\
\end{align*}
$$

$$
\begin{align*}
\Delta; \Gamma & \vdash e : \tau[\mu \alpha. \tau/\alpha] \\
\Delta; \Gamma & \vdash \text{fold}_{\mu \alpha. \tau} e : \mu \alpha. \tau \\
\Delta; \Gamma & \vdash \text{unfold} e : \tau[\mu \alpha. \tau/\alpha] \\
\end{align*}
$$
Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary

Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

- Implicit typing can be impossible, difficult, or confusing
- Explicit coercions can be annoying and clutter language with no-ops
- Most languages do some of each

Anything is decidable if you make the code producer give the implementation enough “hints” about the “proof”
ML datatypes revealed

How is $\mu \alpha.\tau$ related to
type $t = \text{Foo of int | Bar of int * t}$

Constructor use is a “sum-injection” followed by an implicit fold

- So Foo e is really $\text{fold}_t \text{Foo}(e)$
- That is, Foo e has type t (the folded type)

A pattern-match has an implicit unfold

- So match e with... is really match unfold e with...

This “trick” works because different recursive types use different
tags – so the type-checker knows which type to fold to