CIS 624: Structure of Programming Languages

Lecture 11 — STLC Extensions and Related Topics

Boyana Norris
2017

Booleans and Conditionals

Derived forms

- Let bindings (CBV)

Let seems just like \(\lambda \), so can make it a derived form

- A "derived form"

Or just define the semantics to replace let with \(\lambda \):

These 3 semantics are different in the state-sequence sense

But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and \(\lambda \) differently (later topic)

Note: Don’t desugar early if it hurts error messages!

Booleans and Conditionals

- true

- false

- if

Also extend definition of substitution (will stop writing that)...

Notes: CBN, new Canonical Forms case, all lemma cases easy
Pairs (CBV, left-right)

\[
e ::= \cdots | (e, e) | e.1 | e.2
\]

\[
v ::= \cdots | (v, v)
\]

\[
\tau ::= \cdots | \tau \ast \tau
\]

\[
e_1 \rightarrow e'_1
\]

\[
e_2 \rightarrow e'_2
\]

\[
(\tau_1, \tau_2) \rightarrow (\tau_1', \tau_2')
\]

\[
e \rightarrow e'
\]

\[
e.1 \rightarrow e'.1
\]

\[
(v_1, v_2) \rightarrow (v_1', v_2')
\]

Small-step can be a pain

\begin{itemize}
 \item Large-step needs only 3 rules
 \item Will learn more concise notation later (evaluation contexts)
\end{itemize}

Records

Records are like n-ary tuples except with named fields

\begin{itemize}
 \item Field names are not variables; they do not α-convert
 \item e ::= \cdots | \{l_1 = e_1; \ldots; l_n = e_n\} | e.l
 \item v ::= \cdots | \{l_1 = v_1; \ldots; l_n = v_n\}
 \item \tau ::= \cdots | \tau_1 \ast \tau_2
 \item 1 \leq i \leq n
 \item \{l_1 = v_1, \ldots, l_n = v_n\}.l_i \rightarrow v_i
 \item \Gamma \vdash e_1 : \tau_1 \ldots \Gamma \vdash e_n : \tau_n \quad labels\ distinct
 \item \Gamma \vdash \{l_1 = e_1, \ldots, l_n = e_n\} : \{l_1 : \tau_1, \ldots, l_n : \tau_n\}
 \item \Gamma \vdash e : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \quad 1 \leq i \leq n
 \item \Gamma \vdash e.l_i : \tau_i
\end{itemize}

Sums

What about ML-style datatypes:

\[
type t = A \mid B of \text{int} \mid C of \text{int} \ast t
\]

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type 'a mylist = ...)

4. Named types

For now, just model (1) with (anonymous) sum types

\begin{itemize}
 \item (2) is in a later lecture, (3) is straightforward, and (4) we'll discuss informally
\end{itemize}

Pairs continued

\[
\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2
\]

\[
\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2
\]

Canonical Forms: If \(\vdash v : \tau_1 \ast \tau_2 \), then \(v \) has the form \((v_1, v_2) \)

Progress: New cases using Canonical Forms are \(v.1 \) and \(v.2 \)

Preservation: For primitive reductions, inversion gives the result directly

Records continued

\begin{itemize}
 \item Should we be allowed to reorder fields?
 \begin{itemize}
 \item \(\vdash \{l_1 = 42; l_2 = \text{true}\} : \{l_2 : \text{bool}; l_1 : \text{int}\} \) ??
 \item Really a question about, "when are two types equal?"
 \end{itemize}
 \end{itemize}

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

\begin{itemize}
 \item Reasons: Implementation efficiency, type inference
\end{itemize}

Return to this topic when we study subtyping

Sums syntax and overview

\[
e ::= \cdots | A(e) | B(e) | \text{match } e \text{ with } A x.e | B x.e
\]

\[
v ::= \cdots | A(v) | B(v)
\]

\[
\tau ::= \cdots | \tau_1 \ast \tau_2
\]

\begin{itemize}
 \item Only two constructors: A and B
 \item All values of any sum type built from these constructors
 \item So \(A(e) \) can have any sum type allowed by \(e \)'s type
 \item No need to declare sum types in advance
 \item Like functions, will "guess the type" in our rules
\end{itemize}
Sums operational semantics

\[
\text{match } A(v) \text{ with } A x. e_1 \mid B y. e_2 \rightarrow e_1[v/x] \\
\text{match } B(v) \text{ with } A x. e_1 \mid B y. e_2 \rightarrow e_2[v/y] \\
e \rightarrow e' \\
A(e) \rightarrow A(e') \\
B(e) \rightarrow B(e') \\
e \rightarrow e'
\]

\[
\text{match } e \text{ with } A x. e_1 \mid B y. e_2 \rightarrow \text{match } e' \text{ with } A x. e_1 \mid B y. e_2
\]

(Definition of substitution must avoid capture, just like functions)

What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: “this or that not both”
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another

What is going on

Feel free to think about tagged values in your head:

- A tagged value is a pair of:
 - A tag A or B (or 0 or 1 if you prefer)
 - The (underlying) value
- A match:
 - Checks the tag
 - Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2

Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

\[
\Gamma \vdash e : \tau_1 + \tau_2 \\
\Gamma \vdash \text{match } e \text{ with } A x. e_1 \mid B y. e_2 : \tau
\]

Key ideas:
- For constructor-uses, “other side can be anything”
- For match, both sides need same type
 - Don’t know which branch will be taken, just like an if.
 - In fact, can drop explicit booleans and encode with sums: E.g., \(\text{bool} = \text{int} + \text{int} \), \(\text{true} = A(0) \), \(\text{false} = B(0) \)

Sums Type Safety

Canonical Forms: If \(\vdash v : \tau_1 + \tau_2 \), then there exists a \(v_1 \) such that either \(v = A(v_1) \) and \(\vdash v_1 : \tau_1 \) or \(v = B(v_1) \) and \(\vdash v_1 : \tau_2 \)

- Progress for match \(v \) with \(A x. e_1 \mid B y. e_2 \) follows, as usual, from Canonical Forms
- Preservation for match \(v \) with \(A x. e_1 \mid B y. e_2 \) follows from the type of the underlying value and the Substitution Lemma
- The Substitution Lemma has new “hard” cases because we have new binding occurrences
- But that’s all there is to it (plus lots of induction)

What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: “this or that not both”
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another

Sums in C

\[
\text{type } t = A \text{ of } t_1 \mid B \text{ of } t_2 \mid C \text{ of } t_3 \\
\text{match } e \text{ with } A x \rightarrow \ldots
\]

One way in C:

```
struct t {
    enum {A, B, C} tag;
    union {t1 a; t2 b; t3 c;} data;
};
... switch(e->tag){ case A: t1 x=e->data.a; ...}
```

- No static checking that tag is obeyed
- As fat as the fattest variant (avoidable with casts)
 - Mutation costs us again!
Sums in Java

```
<table>
<thead>
<tr>
<th>X</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t1</td>
<td>t2</td>
<td>t3</td>
</tr>
</tbody>
</table>
```

One way in Java (t4 is the match-expression’s type):

```
abstract class t {
  abstract t m();
}
class A extends t { t1 x; t4 m(); ... }
class B extends t { t2 x; t4 m(); ... }
class C extends t { t3 x; t4 m(); ... }
... e.m() ...
```

- A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)

Pairs vs. Sums

```
base_types & primitives, in general
```

```
Types and assumed steps tell us how to type-check and evaluate p1 v1 ... vn, where p1 is a primitive
```

Together the types and assumed steps tell us how to type-check and evaluate p1 v1 ... vn, where p1 is a primitive

```
We can prove soundness once and for all given the assumptions
```

```
Using fix
```

```
To use fix like let rec, just pass it a two-argument function where the first argument is for recursion
```

- Not shown: fix and tuples can also encode mutual recursion

Example:

```
fix f x = e, but we will do something more concise and general but less intuitive
```

```
Recursion
```

```
We won’t prove it, but every extension so far preserves termination
```

```
In math, a fix-point of a function g is an x such that g(x) = x
```

- This makes sense only if g has type τ → τ for some τ
- A particular g could have have 0, 1, 39, or infinity fix-points
- Examples for functions of type int → int:
 - λx. x + 1 has no fix-points
 - λx. x * 0 has one fix-point
 - λx. absolute_value(x) has an infinite number of fix-points
 - λx. if (x < 10 && x > 0) x 0 has 10 fix-points
```

Why called fix?

```
Boyana Norris
```
Higher types

At higher types like \((\text{int} \to \text{int}) \to \text{int}\), the notion of fix-point is exactly the same (but harder to think about)

- For what inputs \(f\) of type \(\text{int} \to \text{int}\) is \(g(f) = f\)

Examples:

- \(\lambda f. \lambda x. (f x) + 1\) has no fix-points
- \(\lambda f. \lambda x. (f x) \times 0\) (or just \(\lambda f. \lambda x. 0\)) has 1 fix-point
  - The function that always returns 0
  - In math, there is exactly one such function (cf. equivalence)
- \(\lambda f. \lambda x. \text{absolute value}(f x)\) has an infinite number of fix-points: Any function that never returns a negative result

Back to factorial

Now, what are the fix-points of \(\lambda f. \lambda x. \text{if } (x < 1) 1 (x \ast (f(x - 1)))\)?

It turns out there is exactly one (in math): the factorial function!

And \(\text{fix } \lambda f. \lambda x. \text{if } (x < 1) 1 (x \ast (f(x - 1)))\) behaves just like the factorial function

- That is, it behaves just like the fix-point of \(\lambda f. \lambda x. \text{if } (x < 1) 1 (x \ast (f(x - 1)))\)
- In general, \(\text{fix}\) takes a function-taking-function and returns its fix-point

(This isn’t necessarily important, but it explains the terminology and shows that programming is deeply connected to mathematics)

Typing fix

\[
\Gamma \vdash e : \tau \to \tau \\
\Gamma \vdash \text{fix } e : \tau
\]

Math explanation: If \(e\) is a function from \(\tau\) to \(\tau\), then \(\text{fix } e\), the fixed-point of \(e\), is some \(\tau\) with the fixed-point property

- So it’s something with type \(\tau\)

Operational explanation: \(\text{fix } \lambda x. e'\) becomes \(e'\text{[fix } \lambda x. e'/x]\)

- The substitution means \(x\) and \(\text{fix } \lambda x. e'\) need the same type
- The result means \(e'\) and \(\text{fix } \lambda x. e'\) need the same type

Note: The \(\tau\) in the typing rule is usually insantiated with a function type

- e.g., \(\tau_1 \to \tau_2\), so \(e\) has type \((\tau_1 \to \tau_2) \to (\tau_1 \to \tau_2)\)

Note: Proving soundness is straightforward!

Anonimy

We added many forms of types, all unnamed a.k.a. structural.

Many real PLs have (all or mostly) named types:

- Java, C, C++: all record types (or similar) have names
- Omitting them just means compiler makes up a name
- OCaml sum types and record types have names

A never-ending debate:

- Structural types allow more code reuse: good
- Named types allow less code reuse: good
- Structural types allow generic type-based code: good
- Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types

Termination

Surprising fact: If \(\cdot \vdash e : \tau\) in STLC with all our additions except \(\text{fix}\), then there exists a \(v\) such that \(e \to^* v\)

- That is, all programs terminate

So termination is trivially decidable (the constant “yes” function), so our language is not Turing-complete

The proof requires more advanced techniques than we have learned so far because the size of expressions and typing derivations does not decrease with each program step

Non-proof:

- Recursion in \(\lambda\) calculus requires some sort of self-application
- Easy fact: For all \(\Gamma, x, \text{ and } \tau\), we cannot derive \(\Gamma \vdash x : \tau\)