Review

\[
e ::= \lambda x. e | x | e \ e | c
\]

\[
\tau ::= \text{int} | \tau \rightarrow \tau
\]

\[
v ::= \lambda x. e | c
\]

\[
\Gamma ::= \cdot | \Gamma, x : \tau
\]

\[
(\lambda x. e) v \rightarrow e[v/x]
\]

\[
e_1 \rightarrow e'_1 \quad e_2 \rightarrow e'_2
\]

\[
e_1 \ e_2 \rightarrow e'_1 \ e_2 \quad v \ e_2 \rightarrow v \ e'_2
\]

\[e[e'/x]\]: capture-avoiding substitution of \(e'\) for free \(x\) in \(e\)

\[
\Gamma \vdash c : \text{int}
\]

\[
\Gamma \vdash x : \Gamma(x)
\]

\[
\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2
\]

\[
\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \quad \Gamma \vdash e_2 : \tau_2
\]

\[
\Gamma \vdash e_1 \ e_2 : \tau_1
\]

Preservation: If \(\cdot \vdash e : \tau\) and \(e \rightarrow e'\), then \(\cdot \vdash e' : \tau\).

Progress: If \(\cdot \vdash e : \tau\), then \(e\) is a value or \(\exists e'\) such that \(e \rightarrow e'\).
Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a *principled methodology* thanks to a *proper education*

- Extend the syntax
- Extend the operational semantics
 - Derived forms (syntactic sugar), or
 - Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure
Let bindings (CBV)

\[e ::= \cdots \mid \text{let } x = e_1 \text{ in } e_2 \]

\[e_1 \rightarrow e'_1 \]

\[\text{let } x = e_1 \text{ in } e_2 \rightarrow \text{let } x = e'_1 \text{ in } e_2 \]

[Let x = v in e → e[v/x]]

\[\Gamma \vdash e_1 : \tau' \quad \Gamma, x : \tau' \vdash e_2 : \tau \]

\[\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau \]

(Also need to extend definition of substitution...)

Progress: If \(e\) is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange
Derived forms

let seems just like \(\lambda \), so can make it a derived form

- let \(x = e_1 \text{ in } e_2 \) “a macro” / “desugars to” \((\lambda x. e_2) \ e_1\)

- A “derived form”

(Harder if \(\lambda \) needs explicit type)

Or just define the semantics to replace let with \(\lambda \):

\[
\text{let } x = e_1 \text{ in } e_2 \rightarrow (\lambda x. e_2) \ e_1
\]

These 3 semantics are different in the state-sequence sense
\((e_1 \rightarrow e_2 \rightarrow \ldots \rightarrow e_n)\)

- But (totally) equivalent and you could prove it (not hard)

Note: ML type-checks let and \(\lambda \) differently (later topic)
Note: Don’t desugar early if it hurts error messages!
Booleans and Conditionals

\[e ::= \cdots \mid \text{true} \mid \text{false} \mid \text{if } e_1 \text{ } e_2 \text{ } e_3 \]

\[\nu ::= \cdots \mid \text{true} \mid \text{false} \]

\[\tau ::= \cdots \mid \text{bool} \]

\[
\frac{e_1 \rightarrow e'_1}{\text{if } e_1 \text{ } e_2 \text{ } e_3 \rightarrow \text{if } e'_1 \text{ } e_2 \text{ } e_3}
\]

\[
\frac{\text{if true } e_2 \text{ } e_3 \rightarrow e_2}{\text{if false } e_2 \text{ } e_3 \rightarrow e_3}
\]

\[
\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{if } e_1 \text{ } e_2 \text{ } e_3 : \tau}
\]

\[
\frac{\Gamma \vdash \text{true} : \text{bool}}{\Gamma \vdash \text{false} : \text{bool}}
\]

Also extend definition of substitution (will stop writing that)...

Notes: CBN, new Canonical Forms case, all lemma cases easy
Pairs (CBV, left-right)

\[e ::= \cdots \mid (e, e) \mid e.1 \mid e.2 \]
\[v ::= \cdots \mid (v, v) \]
\[\tau ::= \cdots \mid \tau \ast \tau \]

\[\begin{align*}
e_1 \rightarrow e_1' & \quad \frac{}{e_1, e_2 \rightarrow (e_1', e_2)} \\
(e_1, e_2) \rightarrow (e_1', e_2) & \quad \frac{}{(v_1, e_2) \rightarrow (v_1, e_2')} \\
\quad e \rightarrow e' & \quad \frac{}{e.1 \rightarrow e'.1} \\
\quad e \rightarrow e' & \quad \frac{}{e.2 \rightarrow e'.2} \\
(v_1, v_2).1 \rightarrow v_1 & \quad \frac{}{(v_1, v_2).2 \rightarrow v_2}
\end{align*}\]

Small-step can be a pain

- Large-step needs only 3 rules
- Will learn more concise notation later (evaluation contexts)
Pairs continued

\[
\begin{align*}
\Gamma \vdash e_1 : \tau_1 & \quad \Gamma \vdash e_2 : \tau_2 \\
\hline
\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e : \tau_1 \ast \tau_2 \\
\hline
\Gamma \vdash e.1 : \tau_1 & \quad \Gamma \vdash e.2 : \tau_2
\end{align*}
\]

Canonical Forms: If \(\cdot \vdash v : \tau_1 \ast \tau_2 \), then \(v \) has the form \((v_1, v_2) \)

Progress: New cases using Canonical Forms are \(v.1 \) and \(v.2 \)

Preservation: For primitive reductions, inversion gives the result \emph{directly}
Records

Records are like \(n \)-ary tuples except with named fields

- Field names are *not* variables; they do *not* \(\alpha \)-convert

\[
\begin{align*}
e & ::= \cdots \mid \{l_1 = e_1; \ldots; l_n = e_n\} \mid e.l \\
v & ::= \cdots \mid \{l_1 = v_1; \ldots; l_n = v_n\} \\
\tau & ::= \cdots \mid \{l_1 : \tau_1; \ldots; l_n : \tau_n\}
\end{align*}
\]

\[
\frac{e_i \rightarrow e'_i}{\{l_1=v_1, \ldots, l_{i-1}=v_{i-1}, l_i=e_i, \ldots, l_n=e_n\} \rightarrow \{l_1=v_1, \ldots, l_{i-1}=v_{i-1}, l_i=e'_i, \ldots, l_n=e_n\}}
\]

\[
\frac{e \rightarrow e'}{e.l \rightarrow e'.l}
\]

\[
\frac{1 \leq i \leq n}{\{l_1 = v_1, \ldots, l_n = v_n\}.l_i \rightarrow v_i}
\]

\[
\frac{\Gamma \vdash e_1 : \tau_1 \quad \ldots \quad \Gamma \vdash e_n : \tau_n \quad \text{labels distinct}}{\Gamma \vdash \{l_1 = e_1, \ldots, l_n = e_n\} : \{l_1 : \tau_1, \ldots, l_n : \tau_n\}}
\]

\[
\frac{\Gamma \vdash e : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \quad 1 \leq i \leq n}{\Gamma \vdash e.l_i : \tau_i}
\]
Records continued

Should we be allowed to reorder fields?

- \(\cdot \vdash \{ l_1 = 42; l_2 = \text{true} \} : \{ l_2 : \text{bool}; l_1 : \text{int} \} \) ??

- Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

- Reasons: Implementation efficiency, type inference

Return to this topic when we study subtyping
Sums

What about ML-style datatypes:

type t = A | B of int | C of int * t

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type 'a mylist = ...)

4. Named types

For now, just model (1) with (anonymous) sum types

► (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss informally
Sums syntax and overview

\[e ::= \cdots | A(e) | B(e) | \text{match } e \text{ with } Ax. \, e | Bx. \, e \]

\[v ::= \cdots | A(v) | B(v) \]

\[\tau ::= \cdots | \tau_1 + \tau_2 \]

- Only two constructors: \textbf{A} and \textbf{B}
- All values of any sum type built from these constructors
- So \(A(e) \) can have any sum type allowed by \(e \)'s type
- No need to declare sum types in advance
- Like functions, will “guess the type” in our rules
Sums operational semantics

\[
\text{match } A(v) \text{ with } A x. \ e_1 \mid B y. \ e_2 \rightarrow e_1[v/x]
\]

\[
\text{match } B(v) \text{ with } A x. \ e_1 \mid B y. \ e_2 \rightarrow e_2[v/y]
\]

\[
\frac{e \rightarrow e'}{A(e) \rightarrow A(e')}
\quad \frac{e \rightarrow e'}{B(e) \rightarrow B(e')}
\]

\[
\text{match } e \text{ with } A x. \ e_1 \mid B y. \ e_2 \rightarrow \text{match } e' \text{ with } A x. \ e_1 \mid B y. \ e_2
\]

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)
What is going on

Feel free to think about *tagged values* in your head:

- A tagged value is a pair of:
 - A tag A or B (or 0 or 1 if you prefer)
 - The (underlying) value

- A match:
 - Checks the tag
 - Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2
Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

\[
\begin{align*}
\Gamma \vdash e : \tau_1 \\
\Gamma \vdash A(e) : \tau_1 + \tau_2 \\
\Gamma \vdash e : \tau_1 + \tau_2 \\
\Gamma, x:\tau_1 \vdash e_1 : \tau \\
\Gamma, y:\tau_2 \vdash e_2 : \tau \\
\Gamma \vdash \text{match } e \text{ with } Ax. \; e_1 | By. \; e_2 : \tau
\end{align*}
\]

Key ideas:

- For constructor-uses, “other side can be anything”
- For \textbf{match}, both sides need same type
 - Don’t know which branch will be taken, just like an \textbf{if}.
 - In fact, can drop explicit booleans and encode with sums:
 E.g., \texttt{bool} = \texttt{int} + \texttt{int}, \texttt{true} = A(0), \texttt{false} = B(0)
Sums Type Safety

Canonical Forms: If $\cdot \vdash v : \tau_1 + \tau_2$, then there exists a v_1 such that either v is $A(v_1)$ and $\cdot \vdash v_1 : \tau_1$ or v is $B(v_1)$ and $\cdot \vdash v_1 : \tau_2$

- Progress for `match v with Ax. e_1 | By. e_2` follows, as usual, from Canonical Forms

- Preservation for `match v with Ax. e_1 | By. e_2` follows from the type of the underlying value and the Substitution Lemma

- The Substitution Lemma has new “hard” cases because we have new binding occurrences

- But that’s all there is to it (plus lots of induction)
What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: “this or that not both”
- You have seen how OCaml does sums (datatypes)
- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another
Sums in C

type t = A of t1 | B of t2 | C of t3
match e with A x -> ...

One way in C:

```c
struct t {
    enum {A, B, C} tag;
    union {t1 a; t2 b; t3 c;} data;
};
... switch(e->tag){ case A: t1 x=e->data.a; ...
```

▶ No static checking that tag is obeyed
▶ As fat as the fattest variant (avoidable with casts)
 ▶ Mutation costs us again!
Sums in Java

:type t = A of t1 | B of t2 | C of t3
:match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 m(){...}}
class B extends t { t2 x; t4 m(){...}}
class C extends t { t3 x; t4 m(){...}}
... e.m() ...

- A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)
Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- Example: replace \texttt{int} \texttt{+} (\texttt{int} \rightarrow \texttt{int}) with \texttt{int} \texttt{*} (\texttt{int} \texttt{*} (\texttt{int} \rightarrow \texttt{int}))

Pairs and sums are “logical duals” (more on that later)

- To make a $\tau_1 \times \tau_2$ you need a τ_1 \textit{and} a τ_2
- To make a $\tau_1 + \tau_2$ you need a τ_1 \textit{or} a τ_2
- Given a $\tau_1 \times \tau_2$, you can get a τ_1 or a τ_2 (or both; your “choice”)
- Given a $\tau_1 + \tau_2$, you must be prepared for either a τ_1 or τ_2 (the value’s “choice”)
Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types
\((b_1, \ldots, b_n) \) and primitives
\((p_1 : \tau_1, \ldots, p_n : \tau_n) \). Examples:

- \(\text{concat} : \text{string} \to \text{string} \to \text{string} \)
- \(\text{toInt} : \text{float} \to \text{int} \)
- \(\text{“hello”} : \text{string} \)

For each primitive, assume if applied to values of the right types it produces a value of the right type

Together the types and assumed steps tell us how to type-check and evaluate \(p_i v_1 \ldots v_n \) where \(p_i \) is a primitive

We can prove soundness once and for all given the assumptions
Recursion

We won’t prove it, but every extension so far preserves termination.

A Turing-complete language needs some sort of loop, but our lambda-calculus encoding won’t type-check, nor will any encoding of equal expressive power.

- So instead add an explicit construct for recursion.
- You might be thinking let rec $f \ x = e$, but we will do something more concise and general but less intuitive.

\[
e ::= \cdots | \text{fix } e
\]

\[
\begin{align*}
e & \rightarrow e' \\
\text{fix } e & \rightarrow \text{fix } e' \\
\text{fix } \lambda x. \ e & \rightarrow e[\text{fix } \lambda x. \ e/x]
\end{align*}
\]

No new values and no new types.
Using fix

To use \texttt{fix} like \texttt{let rec}, just pass it a two-argument function where the first argument is for recursion

- Not shown: \texttt{fix} and tuples can also encode mutual recursion

Example:
\[
\begin{align*}
(fix \ \lambda f. \ \lambda n. \ if \ (n < 1) \ 1 \ (n \ast (f(n - 1)))) & \ 5 \\
\rightarrow & \\
(\lambda n. \ if \ (n < 1) \ 1 \ (n \ast ((fix \ \lambda f. \ \lambda n. \ if \ (n < 1) \ 1 \ (n \ast (f(n - 1))))(n - 1)))) & \ 5 \\
\rightarrow & \\
if \ (5 < 1) \ 1 \ (5 \ast ((fix \ \lambda f. \ \lambda n. \ if \ (n < 1) \ 1 \ (n \ast (f(n - 1))))(5 - 1)) & \\
\rightarrow & 2 \\
5 \ast ((fix \ \lambda f. \ \lambda n. \ if \ (n < 1) \ 1 \ (n \ast (f(n - 1))))(5 - 1)) & \\
\rightarrow & 2 \\
5 \ast ((\lambda n. \ if \ (n < 1) \ 1 \ (n \ast ((fix \ \lambda f. \ \lambda n. \ if \ (n < 1) \ 1 \ (n \ast (f(n - 1))))(n - 1)))) & \ 4 \\
\rightarrow & \\
\ldots
\end{align*}
\]
Why called fix?

In math, a fix-point of a function g is an x such that $g(x) = x$

- This makes sense only if g has type $\tau \rightarrow \tau$ for some τ
- A particular g could have have 0, 1, 39, or infinity fix-points
- Examples for functions of type $\textbf{int} \rightarrow \textbf{int}$:
 - $\lambda x. \ x + 1$ has no fix-points
 - $\lambda x. \ x * 0$ has one fix-point
 - $\lambda x. \ \text{absolute_value}(x)$ has an infinite number of fix-points
 - $\lambda x. \ \text{if} \ (x < 10 \ \&\& \ x > 0) \ x \ 0$ has 10 fix-points
Higher types

At higher types like \((\text{int} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{int})\), the notion of fix-point is exactly the same (but harder to think about)

- For what inputs \(f\) of type \(\text{int} \rightarrow \text{int}\) is \(g(f) = f\)

Examples:

- \(\lambda f. \lambda x. (f \ x) + 1\) has no fix-points

- \(\lambda f. \lambda x. (f \ x) \ast 0\) (or just \(\lambda f. \lambda x. 0\)) has 1 fix-point
 - The function that always returns 0
 - In math, there is exactly one such function (cf. equivalence)

- \(\lambda f. \lambda x. \text{absolute_value}(f \ x)\) has an infinite number of fix-points: Any function that never returns a negative result
Back to factorial

Now, what are the fix-points of
\(\lambda f. \lambda x. \text{if } (x < 1) \ 1 \ (x \ast (f(x - 1))) \)\?

It turns out there is exactly one (in math): the factorial function!

And \textbf{fix} \(\lambda f. \lambda x. \text{if } (x < 1) \ 1 \ (x \ast (f(x - 1))) \) behaves just like the factorial function

► That is, it behaves just like the fix-point of \(\lambda f. \lambda x. \text{if } (x < 1) \ 1 \ (x \ast (f(x - 1))) \)

► In general, \textbf{fix} takes a function-taking-function and returns its fix-point

(This isn't necessarily important, but it explains the terminology and shows that programming is deeply connected to mathematics)
Typing **fix**

\[
\begin{align*}
\Gamma \vdash e : \tau \rightarrow \tau \\
\frac{}{\Gamma \vdash \text{fix } e : \tau}
\end{align*}
\]

Math explanation: If \(e \) is a function from \(\tau \) to \(\tau \), then \(\text{fix } e \), the fixed-point of \(e \), is some \(\tau \) with the fixed-point property

- So it’s something with type \(\tau \)

Operational explanation: \(\text{fix } \lambda x. e' \) becomes \(e'[\text{fix } \lambda x. e' / x] \)

- The substitution means \(x \) and \(\text{fix } \lambda x. e' \) need the same type
- The result means \(e' \) and \(\text{fix } \lambda x. e' \) need the same type

Note: The \(\tau \) in the typing rule is usually insantiated with a function type

- e.g., \(\tau_1 \rightarrow \tau_2 \), so \(e \) has type \((\tau_1 \rightarrow \tau_2) \rightarrow (\tau_1 \rightarrow \tau_2) \)

Note: Proving soundness is straightforward!
General approach

We added let, booleans, pairs, records, sums, and fix

- **let** was syntactic sugar
- **fix** made us Turing-complete by “baking in” self-application
- The others *added types*

Whenever we add a new form of type τ there are:

- Introduction forms (ways to make values of type τ)
- Elimination forms (ways to use values of type τ)

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim forms”?

Boyana Norris

Anonymity

We added many forms of types, all *unnamed* a.k.a. *structural*. Many real PLs have (all or mostly) *named* types:

- Java, C, C++: all record types (or similar) have names
 - Omitting them just means compiler makes up a name
- OCaml sum types and record types have names

A never-ending debate:

- Structural types allow more code reuse: good
- Named types allow less code reuse: good
- Structural types allow generic type-based code: good
- Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types
Termination

Surprising fact: If \(\cdot \vdash e : \tau \) in STLC with all our additions except \texttt{fix}, then there exists a \(v \) such that \(e \rightarrow^* v \)

- That is, all programs terminate

So termination is trivially decidable (the constant “yes” function), so our language is not Turing-complete

The proof requires more advanced techniques than we have learned so far because the size of expressions and typing derivations does not decrease with each program step

Non-proof:

- Recursion in \(\lambda \) calculus requires some sort of self-application
- Easy fact: For all \(\Gamma, x, \) and \(\tau \), we cannot derive \(\Gamma \vdash x \ x : \tau \)