Graduate Programming Languages:
Type Safety for STLC with Constants

Most of this is available in the slides. However, it can help to see it all in one place.

Syntax

\[
e ::= c \mid \lambda x. e \mid x \mid e \ e \\
v ::= c \mid \lambda x. e \\
\tau ::= \text{int} \mid \tau \rightarrow \tau \\
\Gamma ::= \cdot \mid \Gamma, x: \tau
\]

Evaluation Rules (a.k.a. Dynamic Semantics)

\[
e \rightarrow e'
\]

E-Apply

\[
(\lambda x. e) v \rightarrow e[v/x]
\]

E-App1

\[
e_1 \rightarrow e'_1 \\
e_2 \rightarrow e'_2
\]

E-App2

\[
e_1 e_2 \rightarrow e'_1 e_2 \\
v e_2 \rightarrow v e'_2
\]

Typing Rules (a.k.a. Static Semantics)

\[
\Gamma \vdash e : \tau
\]

T-Const

\[
\Gamma \vdash c : \text{int}
\]

T-Var

\[
\Gamma \vdash x : \Gamma(x)
\]

T-Fun

\[
\Gamma, x : \tau_1 \vdash e : \tau_2 \\
x \notin \text{Dom}(\Gamma)
\]

\[
\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau_2
\]

T-App

\[
\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \\
\Gamma \vdash e_2 : \tau_2 \\
\Gamma \vdash e_1 e_2 : \tau_1
\]
Type Soundness

Theorem (Type Soundness). If \(\cdot \vdash e : \tau \) and \(e \rightarrow^* e' \), then either \(e' \) is a value or there exists an \(e'' \) such that \(e' \rightarrow e'' \).

Proof

The Type Soundness Theorem follows as a simple corollary to the Progress and Preservation Theorems stated and proven below: Given the Preservation Theorem, a trivial induction on the number of steps taken to reach \(e' \) from \(e \) establishes that \(\cdot \vdash e' : \tau \). Then the Progress Theorem ensures \(e' \) is a value or can step to some \(e'' \).

We need the following lemma for our proof of Progress, below.

Lemma (Canonical Forms). If \(\cdot \vdash v : \tau \), then

i If \(\tau \) is \(\text{int} \), then \(v \) is a constant, i.e., some \(c \).

ii If \(\tau \) is \(\tau_1 \rightarrow \tau_2 \), then \(v \) is a lambda, i.e., \(\lambda x. e \) for some \(x \) and \(e \).

Canonical Forms. The proof is by inspection of the typing rules.

i If \(\tau \) is \(\text{int} \), then the only rule which lets us give a value this type is T-Const.

ii If \(\tau \) is \(\tau_1 \rightarrow \tau_2 \), then the only rule which lets us give a value this type is T-Fun.

\[\square \]

Theorem (Progress). If \(\cdot \vdash e : \tau \), then either \(e \) is a value or there exists some \(e' \) such that \(e \rightarrow e' \).

Progress. The proof is by induction on (the height of) the derivation of \(\cdot \vdash e : \tau \), proceeding by cases on the bottommost rule used in the derivation.

T-Const \(e \) is a constant, which is a value, so we are done.

T-Var Impossible, as \(\Gamma \) is \(\cdot \).

T-Fun \(e \) is \(\lambda x. e' \), which is a value, so we are done.

T-App \(e \) is \(e_1 \ e_2 \).

By inversion, \(\cdot \vdash e_1 : \tau' \rightarrow \tau \) and \(\cdot \vdash e_2 : \tau' \) for some \(\tau' \).

If \(e_1 \) is not a value, then \(\cdot \vdash e_1 : \tau' \rightarrow \tau \) and the induction hypothesis ensures \(e_1 \rightarrow e'_1 \) for some \(e'_1 \). Therefore, by E-App1, \(e_1 \ e_2 \rightarrow e'_1 \ e_2 \).

Else \(e_1 \) is a value. If \(e_2 \) is not a value, then \(\cdot \vdash e_2 : \tau' \) and our induction hypothesis ensures \(e_2 \rightarrow e'_2 \) for some \(e'_2 \). Therefore, by E-App2, \(e_1 \ e_2 \rightarrow e_1 \ e'_2 \).

Else \(e_1 \) and \(e_2 \) are values. Then \(\cdot \vdash e_1 : \tau' \rightarrow \tau \) and the Canonical Forms Lemma ensures \(e_1 \) is some \(\lambda x. e' \). And \((\lambda x. e') \ e_2 \rightarrow e'[e_2/x] \) by E-Apply, so \(e_1 \ e_2 \) can take a step.

\[\square \]
Theorem (Preservation). If $\vdash e : \tau$ and $e \rightarrow e'$, then $\vdash e' : \tau$.

We will need the following lemma for our proof of Preservation, below. Actually, in the proof of Preservation, we need only a Substitution Lemma where Γ is \cdot, but proving the Substitution Lemma itself requires the stronger induction hypothesis using any Γ.

Lemma (Substitution). If $\Gamma, x:\tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$, then $\Gamma \vdash e[e'/x] : \tau$.

To prove this lemma, we will need the following two technical lemmas, which we will assume without proof (they're not that difficult).

Lemma (Weakening). If $\Gamma \vdash e : \tau$ and $x \notin \text{Dom}(\Gamma)$, then $\Gamma, x:\tau' \vdash e : \tau$.

Lemma (Exchange). If $\Gamma, x:\tau_1, y:\tau_2 \vdash e : \tau$ and $y \neq x$, then $\Gamma, y:\tau_2, x:\tau_1 \vdash e : \tau$.

Now we prove Substitution.

Substitution. The proof is by induction on the derivation of $\Gamma, x:\tau' \vdash e : \tau$. There are four cases. In all cases, we know $\Gamma \vdash e' : \tau'$ by assumption.

T-Const e is c, so $c[e'/x]$ is c. By T-Const, $\Gamma \vdash c : \text{int}$.

T-Var e is y and $\Gamma, x:\tau' \vdash \mathit{y} : \tau$.

If $y \neq x$, then $y[e'/x]$ is y. By inversion on the typing rule, we know that $(\Gamma, x:\tau')(y) = \tau$. Since $y \neq x$, we know that $\Gamma(y) = \tau$. So by T-Var, $\Gamma \vdash \mathit{y} : \tau$.

If $y = x$, then $y[e'/x]$ is e'. $\Gamma, x:\tau' \vdash x : \tau$, so by inversion, $(\Gamma, x:\tau')(x) = \tau$, so $\tau = \tau'$. We know $\Gamma \vdash e' : \tau'$, which is exactly what we need.

T-App e is $e_1 e_2$, so $e[e'/x]$ is $(e_1[e'/x])(e_2[e'/x])$.

We know $\Gamma, x:\tau' \vdash e_1 e_2 : \tau_1$, so, by inversion on the typing rule, we know $\Gamma, x:\tau' \vdash e_1 : \tau_2 \rightarrow \tau_1$ and $\Gamma, x:\tau' \vdash e_2 : \tau_2$ for some τ_2.

Therefore, by induction, $\Gamma \vdash e_1[e'/x] : \tau_2 \rightarrow \tau_1$ and $\Gamma \vdash e_2[e'/x] : \tau_2$.

Given these, T-App lets us derive $\Gamma \vdash (e_1[e'/x])(e_2[e'/x]) : \tau_1$.

So by the definition of substitution $\Gamma \vdash (e_1 e_2)[e'/x] : \tau_1$.

T-Fun e is $\lambda \mathit{y}. \mathit{e}_b$, so $e[e'/x]$ is $\lambda \mathit{y}. (e_b[e'/x])$.

We can α-convert $\lambda \mathit{y}. \mathit{e}_b$ to ensure $y \notin \text{Dom}(\Gamma)$ and $y \neq x$.

We know $\Gamma, x:\tau' \vdash \lambda \mathit{y}. \mathit{e}_b : \tau_1 \rightarrow \tau_2$, so, by inversion on the typing rule, we know $\Gamma, x:\tau', y:\tau_1 \vdash \mathit{e}_b : \tau_2$.

By Exchange, we know that $\Gamma, y:\tau_1, x:\tau' \vdash \mathit{e}_b : \tau_2$.

By Weakening, we know that $\Gamma, y:\tau_1 \vdash \mathit{e}' : \tau'$.

We have rearranged the two typing judgments so that our induction hypothesis applies (using $\Gamma, y:\tau_1$ for the typing context called Γ in the statement of the lemma), so, by induction, $\Gamma, y:\tau_1 \vdash \mathit{e}_b[e'/x] : \tau_2$.

Given this, T-Fun lets us derive $\Gamma \vdash \lambda \mathit{y}. \mathit{e}_b[e'/x] : \tau_1 \rightarrow \tau_2$.

So by the definition of substitution, $\Gamma \vdash (\lambda \mathit{y}. \mathit{e}_b)[e'/x] : \tau_1 \rightarrow \tau_2$. □
Theorem (Preservation). If $\cdot \vdash e : \tau$ and $e \rightarrow e'$, then $\cdot \vdash e' : \tau$.

Preservation. The proof is by induction on the derivation of $\cdot \vdash e : \tau$. There are four cases.

T-Const e is c. This case is impossible, as there is no e' such that $c \rightarrow e'$.

T-Var e is x. This case is impossible, as x cannot be typechecked under the empty context.

T-Fun e is $\lambda x. e_b$. This case is impossible, as there is no e' such that $\lambda x. e_b \rightarrow e'$.

T-App e is $e_1 e_2$, so $\cdot \vdash e_1 e_2 : \tau$.

By inversion on the typing rule, $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$ and $\cdot \vdash e_2 : \tau_2$ for some τ_2.

There are three possible rules for deriving $e_1 e_2 \rightarrow e'$.

E-App1 Then $e' = e'_1 e_2$ and $e_1 \rightarrow e'_1$.

By $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, $e_1 \rightarrow e'_1$, and induction, $\cdot \vdash e'_1 : \tau_2 \rightarrow \tau$.

Using this and $\cdot \vdash e_2 : \tau_2$, T-App lets us derive $\cdot \vdash e'_1 e_2 : \tau$.

E-App2 Then $e' = e_1 e'_2$ and $e_2 \rightarrow e'_2$.

By $\cdot \vdash e_2 : \tau_2$, $e_2 \rightarrow e'_2$, and induction $\cdot \vdash e'_2 : \tau_2$.

Using this and $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, T-App lets us derive $\cdot \vdash e_1 e'_2 : \tau$.

E-Apply Then e_1 is $\lambda x. e_b$ for some x and e_b, and $e' = e_b[e_2/x]$.

By inversion of the typing of $\cdot \vdash e_1 : \tau_2 \rightarrow \tau$, we have $\cdot, x : \tau_2 \vdash e_b : \tau$.

This and $\cdot \vdash e_2 : \tau_2$ lets us use the Substitution Lemma to conclude $\cdot \vdash e_b[e_2/x] : \tau$.

\square