Quality Assurance I

Standup reports
Project 1 delivery
QA Basics

Project 1 Presentations

• Project 1 presentations
 – Will be limited to 6-7 minutes apiece (practice your timing)
 – Make sure you can connect to the projector here (in advance)
 – Test your demo on the computer you plan to use
• Which teams can stay if we run a little late?
Project Submission

• All Project 1 materials are due at class time on Friday
• Make sure that all project deliverables are available on your Assembla pages with links from the Home page
 – Include source code as a downloadable package
 – Include any executable and test cases
 – Include presentation slides
 – Provide explicit instructions how to download, install and run your software!

Quality assurance Basics
Purpose of SE

- The purpose of Software Engineering is to gain and maintain intellectual and managerial control over the products and processes of software development.
 - Intellectual control: able to make rational development decisions based on an understanding of the downstream effects of those choices.
 - Managerial control means we likewise control development resources (budget, schedule, personnel).

Product Development Cycle

Goal is to keep system capabilities and business goals in synch!
Requires Feedback-Control

• Uncertainty means we cannot get everything under control then run on autopilot
• Rather control requires continuous feedback
 1. Define ideal
 2. Make a step
 3. Measure deviation from ideal
 4. Correct direction or redefine ideal and go back to 2

Basic QA Questions

• For this to work, must define notions like “ideal” and “measure” for products and processes
 – What defines the “ideal?”
 – What should we measure?
 – How can we measure it?
 – When should we measure it?
 – Who should do the work?
Example: System Requirements

- What happens if we get requirements wrong?
- *What qualities should a “good” requirements specification have (ideally)?*
- *How should we evaluate the qualities of the requirements specification?*
- What is the right time for these activities?
- Which roles should be responsible?

QA Questions

- Properties of a good requirements spec
 - Relevant: captures what the stakeholders want
 - Complete: captures all the stakeholder requirements (functional and quality)
 - Consistent: requirements consistent with one another
 - Unambiguous: avoids multiple interpretations
 - Precise: clearly distinguish acceptable from unacceptable implementations
 - Verifiable: can it be tested
- How could we evaluate these properties?
 - What could we actually *measure*?
 - Hard problem
Example: System Requirements

- What happens if we get requirements wrong?
- Ideal: which qualities should a “good” requirements specification have?
- How should we evaluate the qualities of the requirements specification?
- When is the right time for these activities?
- Which roles should be responsible?

Increase in Software Cost-to-fix vs. Phase (1976) *

* Barry Boehm - A View of 20th and 21st Century Software Engineering
Quality is Cumulative

- Are the requirements valid?
- Complete? Consistent? Implementable?
- Testable?
- Does the design satisfy requirements?
- Are all functional capabilities included?
- Are qualities addressed (performance, maintainability, usability, etc.)?
- Do the modules work together to implement all the functionality?
- Are likely changes encapsulated?
- Is every module well defined
- Implement the required functionality?
- Race conditions? Memory leaks? Buffer overflow?

We need a plan!

- QA activities are
 - Critical to control (and project success)
 - Part of every phase of the project
 - Time consuming, labor intensive and expensive
 - NIST Study: ~80% of development costs are consumed by software developers identifying and correcting defects
 - Cannot do everything, need to choose

- Suggests need to plan QA activities to:
 - Detect issues as early as possible
 - Target highest priority/risk issues for project
 - Support cost-effective use of resources
Product Development Cycle

- **Business Goals** (Hardware, Software, Marketing)
- **Product Planning** (Development & Marketing Strategy)
- **Requirements** (Validation, Review)
- **Design** (Traceability, Goal satisfaction)
- **Testing** (Code walkthrough, Unit tests, Module tests, Integration test, Validation tests)
- **Integration**

Goal is to keep system capabilities and business goals in synch!

A parallel set of activities

QA Plan

- **Purpose:** Synchronize QA activities with project deliverables such that:
 - Artifacts satisfy quality goals
 - Delivered code is consistent with stakeholder needs
- **The plan should answer the question** “How will the project check that stakeholder goals are being met?”
 - The overall QA objectives, strategy, and methodologies
 - The kinds of QA activities that should occur
 - Roles that will carry out the activities
 - When the activities should occur
Example QA Plan

• See examples linked to Schedule page
1. Purpose
2. Methods
 1. Prototypes
 2. Reviews
 3. Testing, etc.
3. Schedule and Resources
4. Measures: metrics collected
5. Acceptance criteria
 1. Review issues
 2. Code defects
 3. Quality variation (e.g., performance variation), etc.
6. Responsibilities

For Project 1

• Informal plan is adequate but, should describe what you intend to do and why
• Reviews
 – Which artifacts will you review?
 – Which qualities will you review them for? (e.g., compliance with grading criteria)
 – How will you track defects?
• Testing
 – What kinds of test will you run on the software?
 – What are the test cases and results?
 – How will you track defects?
Summary

- Quality Assurance activities provide the feedback in controlling development
- Effective QA requires that we
 - Can define what we want (the ideal)
 - Can evaluate work products against the ideal
- QA activities consume substantial resources, require planning
 ...But, done well, pay for themselves