SDX: A Software-Defined Internet Exchange

Arpit Gupta

Laurent Vanbever, Muhammad Shahbaz, Sean Donovan, Brandon Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, Ethan Katz-Bassett

Georgia Tech, Princeton University, UC Berkeley, USC
The Interdomain Ecosystem is Evolving ...

Flatter and densely interconnected Internet*

*Labovitz et al., *Internet Inter-Domain Traffic*, SIGCOMM 2010
…But BGP is Not

• Routing **only on destination IP prefixes**
 (No customization of routes by application, sender)

• Can only influence **immediate neighbors**
 (No ability to affect path selection remotely)

• **Indirect** control over data-plane forwarding
 (Indirect mechanisms to influence path selection)

How to overcome BGP’s limitations?
SDN for Interdomain Routing

• Forwarding on **multiple header fields** (not just destination IP prefixes)

• Ability to **control entire networks** with a single software program (not just immediate neighbors)

• **Direct control** over data-plane forwarding (not indirect control via control-plane arcana)

How to incrementally deploy SDN for Interdomain Routing?
Deploy SDN at Internet Exchanges

- **Leverage:** SDN deployment even at single IXP can yield benefits for tens to hundreds of ISPs

- **Innovation hotbed:** Incentives to innovate as IXPs on front line of peering disputes

- **Growing in numbers:** ~100 new IXPs established in past three years*

https://prefix.pch.net/applications/ixpdir/summary/growth/
Background: Conventional IXPs

![Diagram of IXPs]

- **AS A Router**
- **AS B Router**
- **AS C Router**
- **Route Server**
- **BGP Session**
- **IXP**
- **Switching Fabric**
SDX = SDN + IXP
SDX Opens Up New Possibilities

• More flexible **business relationships**
 Make peering decisions based on time of day, volume of traffic & nature of application

• More direct & flexible **traffic control**
 Define fine-grained traffic engineering policies

• Better **security**
 – Prefer “more secure” routes
 – Automatically blackhole attack traffic
SDX Enables Innovations at IXPs

- **Dropping of attack traffic**
 - Blocking unwanted traffic in middle of Internet

- **Inbound traffic engineering**
 - Divide traffic by sender or application

- **Application-specific peering**
 - Video traffic via Comcast, non-video via ATT

- **Server load balancing**
 - Select data centers to handle request

- **Redirection through middleboxes**
 - E.g., transcoding, caching, monitoring, etc.
SDX Enables Innovations at IXPs

• **Dropping of attack traffic**
 – Blocking unwanted traffic in middle of Internet

• Inbound traffic engineering
 – Divide traffic by sender or application

• Application-specific peering
 – Video traffic via Comcast, non-video via ATT

• Server load balancing
 – Select data centers to handle request

• Redirection through middleboxes
 – E.g., transcoding, caching, monitoring, etc.
Dropping of Attack Traffic
Dropping of Attack Traffic

AS C under attack originating from AS A
Dropping of Attack Traffic

ASC can remotely block attack traffic at SDX(s)
SDX vs. Traditional blackholing

- **Remote influence**
 Physical connectivity to SDX not required

- **More specific**
 Drop rules based on multiple header fields, source address, destination address, port number …

- **Coordinated**
 Drop rules can be coordinated across multiple IXPs
SDX Enables Innovations at IXPs

• Dropping of attack traffic
 – Blocking unwanted traffic in middle of Internet

• Inbound traffic engineering
 – Divide traffic by sender or application

• Application-specific peering
 – Video traffic via Comcast, non-video via ATT

• Server load balancing
 – Select data centers to handle request

• Redirection through middleboxes
 – E.g., transcoding, caching, monitoring, etc.
Inbound Traffic Engineering

AS A Router SDX Controller AS B Router

AS C Routers

10.0.0.0/8
Inbound Traffic Engineering

<table>
<thead>
<tr>
<th>Incoming Traffic</th>
<th>Out Port</th>
<th>Using BGP</th>
<th>Using SDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>dstport = 80</td>
<td>C1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inbound Traffic Engineering

Fine grained policies not possible with BGP

<table>
<thead>
<tr>
<th>Incoming Traffic</th>
<th>Out Port</th>
<th>Using BGP</th>
<th>Using SDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>dstport = 80</td>
<td>C1</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
Inbound Traffic Engineering

Enables fine-grained traffic engineering policies

<table>
<thead>
<tr>
<th>Incoming Traffic</th>
<th>Out Port</th>
<th>Using BGP</th>
<th>Using SDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>dstport = 80</td>
<td>C1</td>
<td>?</td>
<td>match(dstport = 80) → fwd(C1)</td>
</tr>
</tbody>
</table>
Building SDX is Challenging

• Programming **abstractions**
 How networks define SDX policies and how are they combined together?

• **Interoperation** with BGP
 How to provide flexibility w/o breaking global routing?

• **Scalability**
 How to handle policies for hundreds of peers, half million prefixes and matches on multiple header fields?
Building SDX is Challenging

• Programming **abstractions**
 How networks define SDX policies and how are they combined together?

• **Interoperation** with BGP
 How to provide flexibility w/o breaking global routing?

• **Scalability**
 How to handle policies for hundreds of peers, half million prefixes and matches on multiple header fields?
Directly Program the SDX Switch

Switching Fabric

A1 C1 C2 B1

match(dstport=80) → drop

match(dstport=80) → fwd(C1)

AS A & C directly program the SDX Switch
Conflicting Policies

Switching Fabric

A1

drop? C1?

B1

C1

C2

match(dstport=80) → drop

match(dstport=80) → fwd(C1)

How to restrict participant’s policy to traffic it sends or receives?
Virtual Switch Abstraction

Each AS writes policies for its own virtual switch

- AS A
 - match(dstport=80) → fwd(C)
- AS B
 - match(dstport=80) → fwd(C1)
- AS C
 - C1
 - C2

Switching Fabric
Combining Participant’s Policies

Policy(p) = Pol_A \rightarrow Pol_C
Building SDX is Challenging

• Programming **abstractions**
 How networks define SDX policies and how are they combined together?

• **Interoperation** with BGP
 How to provide flexibility w/o breaking global routing?

• **Scalability**
 How to handle policies for hundreds of peers, half million prefixes and matches on multiple header fields?
Requirement: Forwarding Only Along BGP Advertised Routes

match(dstport=80) → fwd(C)
Ensure ‘p’ is **not** forwarded to C

\[
\text{match}(\text{dstport}=80) \rightarrow \text{fwd}(C)
\]

- **dstip** = 20.0.0.1
- **dstport** = 80
Solution: Policy Augmentation

$(\text{match}(\text{dstport}=80) \land \text{match}(\text{dstip} = 10/8)) \rightarrow \text{fwd}(C)$
Building SDX is Challenging

- **Programming abstractions**
 How networks define SDX policies and how are they combined together?

- **Interoperation with BGP**
 How to provide flexibility w/o breaking global routing?

- **Scalability**
 How to handle policies for hundreds of peers, half million prefixes and matches on multiple header fields?
Scalability Challenges

• Reducing Data-Plane State: Support for all forwarding rules in (limited) switch memory

• Reducing Control-Plane Computation: Faster policy compilation
Scalability Challenges

• **Reducing Data-Plane State**: Support for all forwarding rules in (limited) switch memory
 millions of flow rules possible

• **Reducing Control-Plane Computation**: Faster policy compilation
 policy compilation could take hours
Reducing Data-Plane State: Observations

• Internet routing policies defined for groups of prefixes.*

• **Edge routers** can handle matches on hundreds of thousands of IP prefixes.

*Feamster et al., *Guidelines for Interdomain TE, CCR 2003*
Reducing Data-Plane State: Solution

Group prefixes with similar forwarding behavior

SDX Controller
Reducing Data-Plane State: Solution

Advertise one BGP next hop for each such prefix group

- 10/8
- 40/8
- 20/8

Edge router
Reducing Data-Plane State: Solution

Flow rules at SDX match on BGP next hops

- Edge router
 - 10/8
 - 40/8
 - 20/8
- SDX FIB
 - fwd(1)
 - fwd(2)
Reducing Data-Plane State: Solution

For hundreds of participants’ policies, few *millions* $\Rightarrow < 35K$ flow rules
Reducing Control-Plane Computation

• **Initial policy compilation time**
 – Leveraged domain-specific knowledge of policies
 – Hundreds of participants requires < 15 minutes

• **Policy recompilation time**
 – Leveraged bursty nature of BGP updates
 – Most recompilation after a BGP update < 100 ms
SDX Platform

• Running code with full BGP-integration

• SDX Testbeds:
 – Uses Transit Portal
 – Emulates edge routers (Mininet)

Github repo: https://github.com/sdn-ixp/sdx/
SDX Enables Innovations at IXP

- Dropping of attack traffic
 - Blocking unwanted traffic in middle of Internet
- Inbound traffic engineering
 - Divide traffic by sender or application
- **Application-specific peering**
 - Video traffic via Comcast, non-video via ATT
- Server load balancing
 - Select data centers to handle request
- Redirection through middleboxes
 - E.g., transcoding, caching, monitoring, etc.
Use Case: Application-specific Peering

Transit Portal brings real traffic to SDX Fabric
Use Case:
Application-specific Peering

Policy = `match(dstport = 80) → fwd(B)`
Use Case: Application-specific Peering

- AS C
- AS A
- AS B

SDX Fabric

- 204.57.0.64
- Policy
- Default
- :80

Traffic Rate (Mbps)

Time (seconds)
SDX Deployment

• Research & Education Networks
 Internet2, GENI, SOX, ESnet, NSA-LTS

• Commercial Networks
 Regional IXPs in US, Europe & Africa

• NSF program to encourage SDX deployments
Next Steps

Building SDX-mediated Internet
SDX currently considers a single deployment
Step 1: Interconnecting SDX platforms
Step 2: Completely replacing BGP with SDX-mediated Internet
SDX-Mediated Internet: Advantages

• **New endpoint peering paradigm**
 More flexible, tailored to the traffic exchanged

• **Simple, scalable, and policy neutral “Spine”**
 SDX-to-SDX only, just carry bits

• **In-sync with current Internet Ecosystem**
 Content consumers vs providers vs transit providers
SDX-Mediated Internet: New Research Challenges

• New endpoint peering paradigm
 Policy Analysis?

• Simple, scalable, and policy neutral “Spine”
 Routing Mechanisms?

• In-sync with current Internet Ecosystem
 New players?
Summary

- **SDN-based exchange (SDX)** is promising for fixing Internet routing

- Solved various challenges in building a real deployable SDX

- Many open research problems, both for building and using SDX

Contact: agupta80@gatech.edu

Github repo: https://github.com/sdn-ixp/sdx/