Inferring Multilateral Peering

Vasileios Giotsas1
Shi Zhou1
Matthew Luckie2
Kc Claffy2

1University College London
2UCSD/CAIDA

ACM CoNEX 2013
Motivation and goals

- Topology sources capture only a small fraction of Autonomous System (AS) p2p links
 - 41% p2p links missing from public BGP data (Chen 2009)
 - At least 50K IXP links (Augustin 2009)
 - 50K peering links in a single IXP (Ager 2012)
 - 142K peering links (PCH survey 2011)
 - This work: 206K peering links, 88% missing from public BGP data
Motivation and goals

- Topology sources capture only a small fraction of Autonomous System (AS) p2p links
 - 41% p2p links missing from public BGP data (Chen 2009)
 - At least 50K IXP links (Augustin 2009)
 - 50K peering links in a single IXP (Ager 2012)
 - 142K peering links (PCH survey 2011)
 - This work: 206K peering links, 88% missing from public BGP data

- Goals:
 - Collect and make publicly available data
 - Low measurement cost \(\rightarrow\) repeatability
IXPs facilitate peering

- 95% of missing peering links in IXPs (*He 2005*)
- IXP: A physical infrastructure to facilitate direct traffic exchange
- Two operational models:
 - Non-profit (European) → open data sharing
 - Commercial (N. American) → restrictive data sharing
IXPs facilitate peering

- 95% of missing peering links in IXPs (He 2005)
- IXP: A physical infrastructure to facilitate direct traffic exchange
- Two operational models:
 - Non-profit (European) → open data sharing
 - Commercial (N. American) → restrictive data sharing
Two peering paradigms

- Bilateral peering
 - Separate BGP session per peering
 - Tight control of peering
 - Poor scalability

- Multilateral peering (MLP)
 - BGP session only with Route Servers (RS) for all links
 - Loose control of peering
 - Great scalability/flexibility
Route Servers enable dense peering

- Abundance of peering links because of multilateral agreements
- Very limited public data
 - Links
 - Policies
Route Servers enable dense peering

- Abundance of peering links because of multilateral agreements

- Very limited public data
 - Links
 - Policies

- **Goal:** Infer MLP links that we cannot observe
How MLP links are established?

Connectivity
ASes connected on the same Route Server

Reachability
Allowed by import & export BGP filters

MLP AS link
How MLP links are established?

Connectivity
ASes connected on the same Route Server

Reachability
Allowed by import & export BGP filters

MLP AS link

Cannot observe 😞
How MLP links are established?

Can observe 😊
- IXP websites
- PeeringDB
- EuroIX
- PCH
- RPSL

Connectivity
ASes connected on the same Route Server

Reachability
Allowed by import & export BGP filters

MLP AS link

Cannot observe 😞
How MLP links are established?

Connectivity
ASes connected on the same Route Server

Reachability
Allowed by import & export BGP filters

MLP AS link

Can observe 😊
- IXP websites
- PeeringDB
- EuroIX
- PCH
- RPSL

Cannot observe 😞
Default Route Server behaviour

Advertise to all
Advertisement Control BGP Communities

- **Transitive** BGP attribute
- Tags prefix advertisement with metadata
- 32-bit values divided in two parts:
 - ACTION:TARGET

- **MSK-IX example:**
 - 8635:8635 → Allow:All
 - 0:123 → Block:123
 - 0:8635 → Block:All
 - 8635:123 → Allow:123
Route Server Advertisement Control

Advertise to all except specific ASes

ALL:ALL
BLOCK:B

V. Giotsas, S. Zhou, M. Luckie, K. Claffy
Inferring Multilateral Peering

ACM CoNEXT 2013
Route Server Advertisement Control

Advertise to all except specific ASes

V. Giotsas, S. Zhou, M. Luckie, K. Claffy
Inferring Multilateral Peering
ACM CoNEXT 2013
Measurement through RS Looking Glasses

- show ip bgp summary
 - Get ASes connected on Route Server
 - Query once

- show ip bgp neighbor
 - Get prefixes advertised by each Route Server member
 - Query members times

- show ip bgp
 - Get BGP Communities set for a prefix
 - Query prefix times
Measurement through RS Looking Glasses

- show ip bgp summary
 - Get ASes connected on Route Server
 - Query once
- show ip bgp neighbor
 - Get prefixes advertised by each Route Server member
 - Query \#members times
- show ip bgp
 - Get BGP Communities set for a prefix
 - Query \#prefix times
Measurement through passive BGP data
Measurement through passive BGP data

E A B | ALLOW:ALL BLOCK:D
E A C | ALLOW:ALL
E A D | BLOCK:ALL ALLOW:A ALLOW:C

BGP Route Collector

V. Giotsas, S. Zhou, M. Luckie, K. Claffy
Inferring Multilateral Peering
ACM CoNEXT 2013
Measurement through passive BGP data
How MLP links are established?

Can observe 😊
- IXP websites
- PeeringDB
- EuroIX
- PCH
- RPSL

Connectivity
ASes connected on the same Route Server

Reachability
Allowed by import & export BGP filters

Cannot observe 😞

Can observe 😊
- BGP RS Redistribution Communities

MLP AS link
How MLP links are established?

Connectivity
ASes connected on the same Route Server

Reachability
Allowed by import & export BGP filters

- Can observe 😊
 - IXP websites
 - PeeringDB
 - EuroIX
 - PCH
 - RPSL

- Cannot observe 😞

Can observe 😊
- BGP RS
 - Redistribution Communities

😊 Import filters?
Reciprocity Assumption

- Two ASes that allow each other to receive their traffic at the export filters will not block each other’s traffic at the import filters
- Validation based on AMS-IX IRRdb filters:
 - Compared import/export filters from 230 AMS-IX Route Server members
 - Import filters never more restrictive than export filters
 - 50% of export filters more restrictive than import
 - Asymmetric (single direction) MLP peering
 - False negatives
Results

- Collected presence and permissions data for 13 large European IXPs
- 206,667 MLP links inferred between 1,362 ASes
- 14,276 links appear in more than one IXPs
 - Largest overlap between DE-CIX and AMS-IX

<table>
<thead>
<tr>
<th>IXP</th>
<th>Members*</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSK-IX</td>
<td>348</td>
<td>58,501</td>
</tr>
<tr>
<td>DE-CIX</td>
<td>369</td>
<td>54,082</td>
</tr>
<tr>
<td>AMS-IX</td>
<td>351</td>
<td>49,249</td>
</tr>
<tr>
<td>PLIX</td>
<td>211</td>
<td>21,911</td>
</tr>
<tr>
<td>LINX</td>
<td>176</td>
<td>14,759</td>
</tr>
</tbody>
</table>
Validation

- Tested inferences against links collected from AS paths of 70 RS member looking glasses
- Validation repeated twice, May 2013 and October 2013
- 26,392 links tested, 98.4% successfully validated overall
- Highest validation: 100% (TOP-IX)
- Lowest validation: 96.9% (FranceIX)
- Average for all IXPs: 98.6%
Limitations of validation

- Links part of less preferred paths are hidden from looking glasses that display only the active paths.
- ASes left Route Server or changed policy between inference – validation.
Comparison against observable p2p links

- 12% overlap with passive BGP measurements (Routeview+RIPE RIS+PCH)
- 2% overlap with active traceroute (Ark + DIMES)
Majority of MLP links involve stub ASes
Extremely high MLP density

V. Giotsas, S. Zhou, M. Luckie, K. Claffy

Inferring Multilateral Peering

ACM CoNEXT 2013
Limitations

- Cases where our methodology cannot be applied:
 - IXPs without Route Servers
 - Route Servers that do not use BGP Communities for advertisement control
 - Route Servers that strip out BGP Communities before propagating advertisements
- Coverage of European IXPs only (for the moment)
Conclusions

- Propose and implement a new approach to infer Multilateral Peering links
- Utilize only public data sources
- Apply algorithm at 13 IXPs to infer 206K links
 - 88% missing from RouteViews/RIPE RIS BGP data
- Validate 26K links with 98.4% success rate
Thank you!

Questions?

v.giotsas@cs.ucl.ac.uk
Self-reported Peering Policy can be Misleading

![Graph showing fraction of peers for different peering policies](image)

- **Open**: 96.7%
- **Selective**: 80.4%
- **Restrictive**: 69.2%
Peering policies can depend on location

V. Giotsas, S. Zhou, M. Luckie, K. Claffy

Inferring Multilateral Peering

ACM CoNEXT 2013
Backup slide 3: Prefixes advertised by multiple Route Server members