Neural Networks

Slides adapted from Pedro Domingos and Vibhav Gogate

Connectionist Models

Consider humans:
- Neuron switching time $\sim .001$ second
- Number of neurons $\sim 10^{10}$
- Connections per neuron $\sim 10^{4-5}$
- Scene recognition time $\sim .1$ second
- 100 inference steps doesn’t seem like enough

\Rightarrow Much parallel computation
Properties of neural nets:
- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Perceptron

\[o(x_1, \ldots, x_n) = \begin{cases}
1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\
-1 & \text{otherwise.}
\end{cases} \]

Sometimes we’ll use simpler vector notation:

\[o(\vec{x}) = \begin{cases}
1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\
-1 & \text{otherwise.}
\end{cases} \]
Gradient Descent

To understand, consider simpler linear unit, where

\[o = w_0 + w_1 x_1 + \cdots + w_n x_n \]

Let’s learn \(w_i \)'s that minimize the squared error

\[E[\mathbf{\hat{w}}] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \]

Where \(D \) is set of training examples
Gradient:

\[\nabla E[\bar{w}] = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right] \]

Training rule:

\[\Delta \bar{w} = -\eta \nabla E[\bar{w}] \]

I.e.:

\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \]

Gradient Descent

\[
\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\
= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\
= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\
= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \bar{w} \cdot \bar{x}_d) \\
\frac{\partial E}{\partial w_i} = \sum_d (t_d - o_d) (-x_{i,d})
\]
Gradient Descent

GRADIENT-DESCENT($training_examples, \eta$)

Initialize each w_i to some small random value

Until the termination condition is met, Do

- Initialize each Δw_i to zero.
- For each (\vec{x}, t) in $training_examples$, Do
 - Input instance \vec{x} to unit and compute output o
 - For each linear unit weight w_i, Do
 \[\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i \]
- For each linear unit weight w_i, Do
 \[w_i \leftarrow w_i + \Delta w_i \]

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not separable by H
Batch vs. Incremental Gradient Descent

Batch Mode Gradient Descent:
Do until convergence
1. Compute the gradient $\nabla E_D[\vec{w}]$
2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$

Incremental Mode Gradient Descent:
Do until convergence
For each training example d in D
1. Compute the gradient $\nabla E_d[\vec{w}]$
2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_d[\vec{w}]$

\[
E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2
\]
\[
E_d[\vec{w}] \equiv \frac{1}{2} (t_d - o_d)^2
\]

Incremental Gradient Descent can approximate *Batch Gradient Descent* arbitrarily closely if η made small enough
Multilayer Networks of Sigmoid Units

\[out(x) = g \left(w_0 + \sum_k w_k g \left(w_0^k + \sum_i w_i^k x_i \right) \right) \]
\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\(\sigma(x) \) is the sigmoid function

\[\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x)) \]
We can derive gradient descent rules to train

- One sigmoid unit
- *Multilayer networks* of sigmoid units → Backpropagation

Backpropagation Algorithm

Initialize all weights to small random numbers

Until convergence, Do

For each training example, Do

1. Input it to network and compute network outputs
2. For each output unit k
 \[
 \delta_k \leftarrow o_k(1 - o_k)(t_k - o_k)
 \]
3. For each hidden unit h
 \[
 \delta_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{h,k} \delta_k
 \]
4. Update each network weight $w_{i,j}$
 \[
 w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}
 \]
 where \(\Delta w_{i,j} = \eta \delta_j x_{i,j}\)
More on Backpropagation

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well
 (can run multiple times)
- Often include weight momentum α
 \[
 \Delta w_{i,j}(n) = \eta \delta_i x_{i,j} + \alpha \Delta w_{i,j}(n - 1)
 \]
- Minimizes error over training examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using network after training is very fast

Learning Hidden Layer Representations
A target function:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000 →</td>
<td>10000000</td>
</tr>
<tr>
<td>01000000 →</td>
<td>01000000</td>
</tr>
<tr>
<td>00100000 →</td>
<td>00100000</td>
</tr>
<tr>
<td>00010000 →</td>
<td>00010000</td>
</tr>
<tr>
<td>00001000 →</td>
<td>00001000</td>
</tr>
<tr>
<td>00000100 →</td>
<td>00000100</td>
</tr>
<tr>
<td>00000010 →</td>
<td>00000010</td>
</tr>
<tr>
<td>00000001 →</td>
<td>00000001</td>
</tr>
</tbody>
</table>

Can this be learned?

Learned hidden layer representation:

<table>
<thead>
<tr>
<th>Input</th>
<th>Hidden Values</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000 →</td>
<td>.89 .04 .08</td>
<td>10000000</td>
</tr>
<tr>
<td>01000000 →</td>
<td>.01 .11 .88</td>
<td>01000000</td>
</tr>
<tr>
<td>00100000 →</td>
<td>.01 .97 .27</td>
<td>00100000</td>
</tr>
<tr>
<td>00010000 →</td>
<td>.99 .97 .71</td>
<td>00010000</td>
</tr>
<tr>
<td>00001000 →</td>
<td>.03 .05 .02</td>
<td>00001000</td>
</tr>
<tr>
<td>00000100 →</td>
<td>.22 .99 .99</td>
<td>00000100</td>
</tr>
<tr>
<td>00000010 →</td>
<td>.80 .01 .98</td>
<td>00000010</td>
</tr>
<tr>
<td>00000001 →</td>
<td>.60 .94 .01</td>
<td>00000001</td>
</tr>
</tbody>
</table>
Convergence of Backpropagation

Gradient descent to some local minimum
- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different initial weights

Nature of convergence
- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses
Expressiveness of Neural Nets

Boolean functions:
- Every Boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden units

Continuous functions:
- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers

Overfitting in Neural Nets

Error versus weight updates (example 1)

Training set error
Validation set error
Overfitting Avoidance

Penalize large weights:

\[
E(\vec{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ij}^2
\]

Weight sharing
Early stopping
Neural Networks: Summary

- Perceptrons
- Gradient descent
- Multilayer networks
- Backpropagation