Project 1 Presentations

- Final presentations in Deschutes 220
 - Will be limited to 10 minutes apiece (practice your timing)
 - Make sure you can connect to the projector (in advance)
 - Test your demo on the computer you plan to use
- We do not have enough time for all the teams to present during class. Can your team stay 10-15 minutes late?

Project Submission

- All Project 1 materials are due at class time on Friday
- Make sure that all project deliverables are available on your Assembla pages with links from the Home page
 - Include source code as a downloadable package
 - Include any executable and test cases
 - Include presentation slides
 - Provide explicit instructions how to download, install and run your software!
Project presentations

QA Basics

Need for a plan

Purpose of SE

- The purpose of Software Engineering is to gain and maintain intellectual and managerial control over the products and processes of software development.
 - Intellectual control: able to make rational development decisions based on an understanding of the downstream effects of those choices.
 - Managerial control means we likewise control development resources (budget, schedule, personnel).
Product Development Cycle

- **Business Goals**
 - Hardware
 - Software
 - Marketing

- **Product Planning**
 - Development & Marketing Strategy

- **Requirements**
 - Functionality
 - Qualities

- **Design**
 - Costs / tradeoffs

- **Code**

- **Test & Validate**

- **Deploy**

Goal is to keep system capabilities and business goals in synch!

Requires Feedback-Control

- Uncertainty means we cannot get everything under control then run on autopilot
- Rather control requires continuous feedback
 1. Define ideal
 2. Make a step
 3. Measure deviation from ideal
 4. Correct direction or redefine ideal and go back to 2

Role of QA
Basic QA Questions

- What defines the “ideal?”
- What should we measure?
- How can we measure it?
- When should we measure it?
- Who should do the work?

Example: System Requirements

- What happens if we get requirements wrong?
- Ideal: which qualities should a “good” requirements specification have?
- How should we evaluate the qualities of the requirements specification?
- What is the right time for these activities?
- Which roles should be responsible?
QA Questions

• Properties of a good requirements spec
 – Relevant: capture what the stakeholders want?
 – Complete: capture all the stakeholder requirements (functional and quality)?
 – Consistent: not inconsistent with one another?
 – Unambiguous: avoid multiple interpretations?
 – Precise: clearly distinguish acceptable from unacceptable implementations?
 – Verifiable: can be tested?
• How could we evaluate these properties?
 – What could we actually measure?

Example: System Requirements

• What happens if we get requirements wrong?
• Ideal: which qualities should a “good” requirements specification have?
• How should we evaluate the qualities of the requirements specification?
• What is the right time for these activities?
• Which roles should be responsible?
Increase in Software Cost-to-fix vs. Phase (1976) *

* Barry Boehm - A View of 20th and 21st Century Software Engineering

Quality is Cumulative

- Are the requirements valid?
- Complete? Consistent? Implementable?
- Testable?

- Does the design satisfy requirements?
- Are all functional capabilities included?
- Are qualities addressed (performance, maintainability, usability, etc.?)

- Do the modules work together to implement all the functionality?
- Are likely changes encapsulated?
- Is every module well defined

- Implement the required functionality?
- Race conditions? Memory leaks? Buffer overflow?
We need a plan!

- QA activities are
 - Critical to control (and project success)
 - Part of every phase of the project
 - Time consuming, labor intensive and expensive
 - NIST Study: ~80% of development costs are consumed by software developers identifying and correcting defects
 - Cannot do everything, need to choose
- Suggests need to plan QA activities
 - Detect issues as early as possible
 - Target highest priority/risk issues for project
 - Support cost-effective use of resources

Product Development Cycle

Goal is to keep system capabilities and business goals in synch!
QA Plan

- Purpose: synchronize QA activities with project deliverables such that:
 - Artifacts satisfy quality goals
 - Delivered code is consistent with stakeholder needs
- The plan should answer the question “How will the project meet its quality goals?”
 - The overall QA objectives, strategy, and methodologies
 - The kinds of QA activities that should occur
 - Roles that will carry out the activities
 - When the activities should occur

Example QA Plan

- See example provided with Assembla pages
1. Purpose
2. Methods
 1. Prototypes
 2. Reviews
 3. Testing, etc.
3. Schedule and Resources
4. Measures: metrics collected
5. Acceptance criteria
 1. Review issues
 2. Code defects
 3. Quality variation (e.g., performance variation), etc.
6. Responsibilities
Verification and Validation

Validation and Verification

- **Validation**: activities to answer the question – “Are we building a system the customer wants?”
 - Familiar activity: customer review of prototype
- **Verification**: activities to answer the question – “Are we building the system consistent with its specifications?”
 - Most familiar verification activity is functional testing
- Both are processes, both have many variations
V&V Methods

• Most applied V&V uses one of two methods
• Review: use of human skills to find defects
 – Pro: applies human understanding, skills. Good for detecting logical errors, problem misunderstanding
 – Con: poor at detecting inconsistent assumptions, details of consistency, completeness. Labor intensive
• Testing: use of machine execution
 – Pro: can be automated, repeated. Good at detecting detail errors, checking assumptions
 – Con: cannot establish correctness or quality
• Will discuss methods for each of these in coming weeks

Summary

• Quality Assurance activities provide the feedback in controlling development
• Effective QA requires that we
 – Can define what we want (the ideal)
 – Can evaluate work products against the ideal
• QA activities consume substantial resources, require planning
 …But, done well, pay for themselves