Minimum spanning trees

CIS 315
Kruskal’s Method

1) $A = \emptyset$
2) for each $v \in V$
3) \text{makeSet}(v)
4) sort E by weight
5) for each $(u,v) \in E$
6) \text{if}\ \text{findSet}(u) \neq \text{findSet}(v)
7) \text{then} \ A = A \cup \{(u,v)\}
8) \text{union}(u, v)$
9) return A

Timing:

- lines 2-3: $O(V)$
- line 4: $O(E \lg E)$ -- faster if small edge weights (counting sort)?
- lines 5-8: E calls to 3 union-find operations, each $O(\lg^* V)$ amortized
- lines 5-8: total $O(E \lg^* V)$
- overall total: $O(E \lg E)$
aside: disjoint sets

Figure 5.5 A directed-tree representation of two sets \{B, E\} and \{A, C, D, F, G, H\}.

from Dasgupta-Papadimitriou-Vazirani
union-find by rank with path compression

```python
procedure makeset(x)
    \( \pi(x) = x \)
    rank(x) = 0

function find(x)
    while x \neq \pi(x): x = \pi(x)
    return x

procedure union(x, y)
    \( r_x = \text{find}(x) \)
    \( r_y = \text{find}(y) \)
    if \( r_x = r_y \): return
    if rank(r_x) > rank(r_y):
        \( \pi(r_y) = r_x \)
    else:
        \( \pi(r_x) = r_y \)
        if rank(r_x) = rank(r_y): rank(r_y) = rank(r_y) + 1
```

Any sequence of \(m \) operations, \(n \) of which are makeset, takes time \(O(m \lg^* n) \)

- \(\lg^* n \) is minimum \(k \) such that \(\lg \lg \lg \ldots \lg n \leq 1 \) (\(k \) iterations)
- actually better -- \(O(m\alpha(n)) \) -- \(\alpha(n) \) is inverse Ackermann function
- both \(\lg^* n \) and \(\alpha(n) \) are very very slow growing, essentially constant
Prim’s method

for each $u \in V$
 $u.key = \infty$
 $u.prev = \text{nil}$
$r.key = 0$ -- start point

priority queue $Q \leftarrow V$ -- insert all of V into Q

while Q not empty
 $u = Q.extractMin$
 for each $v \in \text{adj}[u]$
 if $v \in Q$ and $W[u,v] < v.key$
 then
 $v.prev = u$
 $v.key = W[u,v]$ -- use heap decreaseKey operation
time for Prim

- there is one buildHeap
- V extractMin operations
- E decreaseKey operations
- time using binary heap
 \[O((V+E) \lg V) \]
- time using Fibonacci heap
 \[O(V \lg V + E) \]
generic MST proof with loop invariant!

A = ∅
while A not yet spanning tree
 choose a safe edge (u,v) for A
 add (u,v) to A

Definition: Suppose A is a subset of a MST of the graph G. A **safe edge** for A is an edge (u,v) such that A U {(u,v)} is also a subset of a MST of G.

- so our algorithm is trivially correct (think about initialization, maintenance, and termination)
- still need to fill it out
safe edges and cuts

• Prim and Kruskal choose safe edges by means of cuts
• let $G=(V,E)$ be the (weighted) graph, and let $A \subseteq E$ be a set of edges
• the idea is that A is a subset of a MST
• a cut that respects A is a proper subset of vertices $S \subseteq V$, ..., so $(S,V-S)$ partitions the vertices
• ... and no edge of A is allowed to cross $(S,V-S)$
light edge

- a light edge for a cut \((S,V-S)\) is a minimum weight edge crossing the cut
- main theorem: for any cut \((S,V-S)\) respecting \(A\), a light edge for the cut is safe for \(A\)
- both Prim and Kruskal pick light edges for some cut
- therefore, they are both correct
the dual to a cut is a cycle

input: graph G=(V,E), with weights

T=E
while T has a cycle
 pick a cycle C in T
 find a max weight edge (u,v) in T
 remove edge (u,v) from T

• does this work?
• can it be proved correct loop invariently?
• efficiency?