Lecture 02/24/16

Lecturer: Xiaodi Wu

February 24th, 2016
Removal

Remove key k

- Search for that key k.
- If no such k, nothing to remove.
- Otherwise, arrive at an internal node (two cases): (1) with all external nodes (2) otherwise.
- Claim: can always reduce to case (1). Suppose the key is the ith item k_i at a node z.
 - Find the right-most internal node v in the subtree rooted at the ith child of z. Claim: v is case (1). Why?
Removal

Remove key k

- Search for that key k.
- If no such k, nothing to remove.
- Otherwise, arrive at an internal node (two cases): (1) with all external nodes (2) otherwise.
- Claim: can always reduce to case (1). Suppose the key is the ith item k_i at a node z.
 - Find the right-most internal node v in the subtree rooted at the ith child of z. Claim: v is case (1). Why?
 - Swap k_i and the last item of v. Reduce to case (1).
Removal: Cont’d

Remove key k: Case 1

- k is stored at a node v with only external children.
- Remove it. The depth property is preserved.
- However, the size property might be violated (i.e., under-flow)
- A generic way to handle the under-flow needed.
Restoration at Underflow!

Find the immediate siblings of v

- Note v should be 2-node before removal.
- If there is an immediate sibling w of v (3-node or 4-node), then perform a transfer operation.
Restoration at Underflow!

Find the immediate siblings of v

- Note v should be 2-node before removal.
- If there is an immediate sibling w of v (3-node or 4-node), then perform a **transfer** operation.
- Otherwise, perform a **fusion** operation with an immediate sibling w of v. (2-node in this case).
Transfer operation

\(v \) node to remove keys, \(w \) 3-node or 4-node and \(v \)'s immediate sibling, \(u \) 3-node or 4-node and \(u \)'s parent and the key \(k \) that separates \(v, w \).

- Assume \(w \) is after \(v \), similarly for the other case.
- Let \(k_w \) be the first key in \(w \) and \(T_w \) the first subtree of \(w \).
- Move \(k_w \) to \(u \), replacing the position of \(k \). Move \(k \) to \(v \) as the last key.
- Move \(T_w \) to be the last subtree of \(v \).
Transfer operation

\(\nu \) : node to remove keys, \(\omega \) : 3-node or 4-node and \(\nu \) ’s immediate sibling, \(\omega \) : \(\omega \), \(\nu \) ’s parent and the key \(k \) that separates \(\nu \), \(\omega \).

- assume \(\omega \) is after \(\nu \), similarly for the other case.
- Let \(k_\omega \) be the first key in \(\omega \) and \(T_\omega \) the first subtree of \(\omega \).
- Move \(k_\omega \) to \(\omega \), replacing the position of \(k \). Move \(k \) to \(\nu \) as the last key.
- Move \(T_\omega \) to be the last subtree of \(\nu \).

Correctness & Implementation

- **Transfer** preserves the depth-property and the multi-way search tree property.
- Restore the size-property of \(\nu \). Preserve the size-property of the rest nodes.
- Implementation: \(O(1) \).
Fusion operation

v: node to remove keys, w: 2-node and v’s immediate sibling, u: w, v’s parent and the key k that separates v, w.

- Combine v and w to get a new node v'.

Correctness & Implementation

- Fusion preserves the depth-property and the multi-way search tree property.
- Establish the size-property of v'.
- However, u might violate the size-property. Repeat either the transfer or fusion on u again. At most repeat $O(h) = O(\log(n))$ times.
Fusion operation

\(v \): node to remove keys, \(w \): 2-node and \(v \)’s immediate sibling, \(u \): \(w \), \(v \)’s parent and the key \(k \) that separates \(v \), \(w \).

- Combine \(v \) and \(w \) to get a new node \(v' \).
- Move \(k \) into the new node \(v' \). Keep subtrees from both \(v \), \(w \) and put them in the right order.
Fusion operation

\(v\): node to remove keys, \(w\): 2-node and \(v\)'s immediate sibling, \(u\): \(w\), \(v\)'s parent and the key \(k\) that separates \(v\), \(w\).

▶ Combine \(v\) and \(w\) to get a new node \(v'\).
▶ Move \(k\) into the new node \(v'\). Keep subtrees from both \(v\), \(w\) and put them in the right order.

Correctness & Implementation

▶ **Fusion** preserves the depth-property and the multi-way search tree property.
Fusion operation

v: node to remove keys, w: 2-node and v's immediate sibling, u: w, v’s parent and the key k that separates v, w.

- Combine v and w to get a new node v'.
- Move k into the new node v'. Keep subtrees from both v, w and put them in the right order.

Correctness & Implementation

- **Fusion** preserves the depth-property and the multi-way search tree property.
- Establish the size-property of v'.
Fusion operation

\(v\): node to remove keys, \(w\): 2-node and \(v\)'s immediate sibling, \(u\): \(w\), \(v\)'s parent and the key \(k\) that separates \(v, w\).

- Combine \(v\) and \(w\) to get a new node \(v'\).
- Move \(k\) into the new node \(v'\). Keep subtrees from both \(v, w\) and put them in the right order.

Correctness & Implementation

- **Fusion** preserves the depth-property and the multi-way search tree property.
- Establish the size-property of \(v'\).
- However, \(u\) might violate the size-property. Repeat either the transfer or fusion on \(u\) again. At most repeat \(O(h) = O(\log(n))\) times.
(2,4) Tree insertion: Remove 12, fusion
(2,4) Tree insertion: Remove 12, fusion
(2,4) Tree insertion: Remove 13, no transfer or fusion
(2,4) Tree insertion: Remove 13, no transfer or fusion
(2,4) Tree insertion: Remove 14, fusion twice
Tree insertion: Remove 14, fusion twice
(2,4) Tree insertion: Remove 14, fusion twice
(2,4) Tree insertion: Remove 14, fusion twice
(2,4) Tree insertion: Remove 14, fusion twice