For efficient multi-way tree implementation, we need small h and d. What is the best trade-off?
Performance depends on h and d

For efficient multi-way tree implementation, we need small h and d. What is the best trade-off?

(2,4) Trees

- Achieve $h = \Theta(\log(n))$ and $2 \leq d \leq 4$.
- **Size Property**: every node has at most four children.
- **Depth Property**: all the external nodes have the same depth.
- Size and Depth Properties $\Rightarrow h = \Theta(\log(n))$.
Insertion in a (2,4) Tree

Insert key k

- Search for that key k.

Depth Property preserved! Might violate the Size Property! Overflow! A generic way to handle the overflow needed!
Insertion in a (2,4) Tree

Insert key k

- Search for that key k.
- If no such k, the search terminates at an external node z.

Depth Property preserved! Might violate the Size Property! overflow! A generic way to handle the overflow needed!
Insertion in a (2,4) Tree

Insert key k

- Search for that key k.
- If no such k, the search terminates at an external node z.
- Let v be z’s parent. The new item is inserted into v.
Insertion in a (2,4) Tree

Insert key \(k \)

- Search for that key \(k \).
- If no such \(k \), the search terminates at an external node \(z \).
- Let \(v \) be \(z \)'s parent. The new item is inserted into \(v \).
- Depth Property preserved! Might violate the Size Property! overflow!
Insertion in a (2,4) Tree

Insert key k

- Search for that key k.
- If no such k, the search terminates at an external node z.
- Let v be z’s parent. The new item is inserted into v.
- Depth Property preserved! Might violate the Size Property! overflow!
- A generic way to handle the overflow needed!
When overflow, ν must be a 5-node. Let ν_1, \cdots, ν_5 be its children. Let $k_1 \leq k_2 \leq k_3 \leq k_4$ be the keys stored in ν.
Restoration at Overflow!

When overflow, \(v \) must be a 5-node. Let \(v_1, \cdots, v_5 \) be its children. Let \(k_1 \leq k_2 \leq k_3 \leq k_4 \) be the keys stored in \(v \).

Split operation on \(v \)

- \(v \rightarrow v', v'' \): \(v' \), 3-node with \(v_1, v_2, v_3 \) and \(k_1, k_2 \); \(v'' \), 2-node with \(v_4, v_5 \) and \(k_4 \).
When overflow, \(v \) must be a 5-node. Let \(v_1, \ldots, v_5 \) be its children. Let \(k_1 \leq k_2 \leq k_3 \leq k_4 \) be the keys stored in \(v \).

Split operation on \(v \)

- \(v \rightarrow v', v'' \): \(v' \), 3-node with \(v_1, v_2, v_3 \) and \(k_1, k_2 \); \(v'' \), 2-node with \(v_4, v_5 \) and \(k_4 \).
- Let \(u \) be \(v' \)’s parent if exists. Otherwise, create a parent (root) \(u \).
Restoration at Overflow!

When overflow, \(v \) must be a 5-node. Let \(v_1, \ldots, v_5 \) be its children. Let \(k_1 \leq k_2 \leq k_3 \leq k_4 \) be the keys stored in \(v \).

Split operation on \(v \)

- \(v \rightarrow v', v'' \): \(v' \), 3-node with \(v_1, v_2, v_3 \) and \(k_1, k_2 \); \(v'' \), 2-node with \(v_4, v_5 \) and \(k_4 \).
- Let \(u \) be \(v \)'s parent if exists. Otherwise, create a parent (root) \(u \).
- Insert \(k_3 \) into \(u \), and attach \(v', v'' \) to \(u \) accordingly.
Restoration at Overflow!

When overflow, v must be a 5-node. Let v_1, \cdots, v_5 be its children. Let $k_1 \leq k_2 \leq k_3 \leq k_4$ be the keys stored in v.

Split operation on v

- $v \rightarrow v', v'': v'$, 3-node with v_1, v_2, v_3 and k_1, k_2; v'', 2-node with v_4, v_5 and k_4.
- Let u be v's parent if exists. Otherwise, create a parent (root) u.
- Insert k_3 into u, and attach v', v'' to u accordingly.

This might cause u to overflow, repeat the same procedure again until no overflow.
(2,4) Tree insertion

Insertion one by one: 4, 6, 12, 15, 3, 5, 10, 8.
(2,4) Tree insertion

Insertion one by one: 4, 6, 12, 15, 3, 5, 10, 8.
(2,4) Tree insertion: insert 17
Correctness and Complexity

Correctness

- Each split restores the size property of current nodes and preserve the depth property.
Correctness and Complexity

Correctness

- Each split restores the size property of current nodes and preserve the depth property.
- Might cause new violations, however, only among its ancestors. Only $O(h) = O(\log(n))$ such splits.
Correctness and Complexity

Correctness

- Each split restores the size property of current nodes and preserve the depth property.
- Might cause new violations, however, only among its ancestors. Only $O(h) = O(\log(n))$ such splits.

Complexity

- Each split takes $O(1)$. In total, $O(\log(n))$ such splits.
- Total time is $O(\log(n))$.
Removal

Remove key k

- Search for that key k.

Claim: can always reduce to case (1). Suppose the key is the ith item k_i at a node z. Find the right-most internal node v in the subtree rooted at the ith child of z. Claim: v is case (1). Why?

Swap k_i and the last item of v. Reduce to case (1).
Removal

Remove key k

- Search for that key k.
- If no such k, nothing to remove.
Remove key \(k \)

- Search for that key \(k \).
- If no such \(k \), nothing to remove.
- Otherwise, arrive at an internal node (two cases): (1) with all external nodes (2) otherwise.

Claim: can always reduce to case (1). Suppose the key is the \(i \)th item \(k_i \) at a node \(z \).

Find the right-most internal node \(v \) in the subtree rooted at the \(i \)th child of \(z \). Claim: \(v \) is case (1). Why?

Swap \(k_i \) and the last item of \(v \). Reduce to case (1).
Removal

Remove key k

- Search for that key k.
- If no such k, nothing to remove.
- Otherwise, arrive at an internal node (two cases): (1) with all external nodes (2) otherwise.
- Claim: can always reduce to case (1). Suppose the key is the ith item k_i at a node z.
 - Find the right-most internal node v in the subtree rooted at the ith child of z. Claim: v is case (1). Why?
Removal

Remove key k

- Search for that key k.
- If no such k, nothing to remove.
- Otherwise, arrive at an internal node (two cases): (1) with all external nodes (2) otherwise.
- Claim: can always reduce to case (1). Suppose the key is the ith item k_i at a node z.
 - Find the right-most internal node v in the subtree rooted at the ith child of z. Claim: v is case (1). Why?
 - Swap k_i and the last item of v. Reduce to case (1).
Removal: Cont’d

Remove key k: Case 1

- k is stored at a node v with only external children.
Removal: Cont’d

Remove key k: Case 1

- k is stored at a node v with only external children.
- Remove it. The depth property is preserved.
Removal: Cont’d

Remove key \(k \): Case 1

- \(k \) is stored at a node \(v \) with only external children.
- Remove it. The depth property is preserved.
- However, the size property might be violated (i.e., under-flow)
Remove key k: Case 1

- k is stored at a node v with only external children.
- Remove it. The depth property is preserved.
- However, the size property might be violated (i.e., under-flow)
- A generic way to handle the under-flow needed.
Find the immediate siblings of v

- Note v should be 2-node before removal.
Restoration at Underflow!

Find the immediate siblings of v

- Note v should be 2-node before removal.
- If there is an immediate sibling w of v (3-node or 4-node), then perform a \texttt{transfer} operation.
Restoration at Underflow!

Find the immediate siblings of v

- Note v should be 2-node before removal.
- If there is an immediate sibling w of v (3-node or 4-node), then perform a transfer operation.
- Otherwise, perform a fusion operation with an immediate sibling w of v. (2-node in this case).
Transfer operation

v: node to remove keys, w: 3-node or 4-node and v’s immediate sibling, u: w, v’s parent and the key k that separates v, w.

- assume w is after v, similarly for the other case.

Let k_w be the first key in w and T_w the first subtree of w.

Move k_w to u, replacing the position of k.

Move k to v as the last key.

Move T_w to be the last subtree of v.

Correctness & Implementation

Transfer preserves the depth-property and the multi-way search tree property.

Restore the size-property of v. Preserve the size-property of the rest nodes.

Implementation: $O(1)$.
Transfer operation

\(v \): node to remove keys, \(w \): 3-node or 4-node and \(v \)'s immediate sibling, \(u \): \(w \), \(v \)'s parent and the key \(k \) that separates \(v, w \).

- assume \(w \) is after \(v \), similarly for the other case.
- Let \(k_w \) be the first key in \(w \) and \(T_w \) the first subtree of \(w \).
Transfer operation

\(\nu \): node to remove keys, \(\omega \): 3-node or 4-node and \(\nu \)'s immediate sibling, \(u \): \(\omega \), \(\nu \)'s parent and the key \(k \) that separates \(\nu, \omega \).

- assume \(\omega \) is after \(\nu \), similarly for the other case.
- Let \(k_\omega \) be the first key in \(\omega \) and \(T_\omega \) the first subtree of \(\omega \).
- Move \(k_\omega \) to \(u \), replacing the position of \(k \). Move \(k \) to \(\nu \) as the last key.

Correctness & Implementation

- Transfer preserves the depth-property and the multi-way search tree property.
- Restore the size-property of \(\nu \). Preserve the size-property of the rest nodes.
- Implementation: \(O(1) \).
Transfer operation

\(v \): node to remove keys, \(w \): 3-node or 4-node and \(v \)'s immediate sibling, \(u \): \(w \), \(v \)'s parent and the key \(k \) that separates \(v, w \).

- assume \(w \) is after \(v \), similarly for the other case.
- Let \(k_w \) be the first key in \(w \) and \(T_w \) the first subtree of \(w \).
- Move \(k_w \) to \(u \), replacing the position of \(k \). Move \(k \) to \(v \) as the last key.
- Move \(T_w \) to be the last subtree of \(v \).

Correctness & Implementation

- Transfer preserves the depth-property and the multi-way search tree property.
- Restore the size-property of \(v \). Preserve the size-property of the rest nodes.
- Implementation: \(O(1) \).
Transfer operation

\(v \): node to remove keys, \(w \): 3-node or 4-node and \(v \)’s immediate sibling, \(u \): \(w \), \(v \)’s parent and the key \(k \) that separates \(v, w \).

- assume \(w \) is after \(v \), similarly for the other case.
- Let \(k_w \) be the first key in \(w \) and \(T_w \) the first subtree of \(w \).
- Move \(k_w \) to \(u \), replacing the position of \(k \). Move \(k \) to \(v \) as the last key.
- Move \(T_w \) to be the last subtree of \(v \).

Correctness & Implementation

- **Transfer** preserves the depth-property and the multi-way search tree property.
Transfer operation

\(\nu: \) node to remove keys, \(\omega: \) 3-node or 4-node and \(\nu \)'s immediate sibling, \(\omega: \) \(\nu \)'s parent and the key \(k \) that separates \(\nu, \omega \).

- Assume \(\omega \) is after \(\nu \), similarly for the other case.
- Let \(k_{\omega} \) be the first key in \(\omega \) and \(T_{\omega} \) the first subtree of \(\omega \).
- Move \(k_{\omega} \) to \(\omega \), replacing the position of \(k \). Move \(k \) to \(\nu \) as the last key.
- Move \(T_{\omega} \) to be the last subtree of \(\nu \).

Correctness & Implementation

- **Transfer** preserves the depth-property and the multi-way search tree property.
- Restore the size-property of \(\nu \). Preserve the size-property of the rest nodes.
- Implementation: \(O(1) \).
(2,4) Tree insertion: Remove 4
(2,4) Tree insertion: Remove 12 (reduction to case 1)
(2,4) Tree insertion: Remove 12 (reduction to case 1)