Re-balance it through the tri-node operation

Fix the x, y, z in the previous slides

- Let a, b, c be the inorder sequence of x, y, z.
- Let T_0, T_1, T_2, T_3 be the four sub-trees such that the inorder traversal is $T_0, a, T_1, b, T_2, c, T_3$.
- Change the tree to the following shape.

```
        b
       /|
      / | 
     a  T1  c
    /     |   /
 T0     T2  T3
```
Cases: \(y \) in the middle

Let \(T_0, T_1, T_2, T_3 \) be subtrees.

- \(z, y, x \): full picture \(T_0, z, T_1, y, T_2, x, T_3 \) (in-order traversal).
Cases: y in the middle after balance

Let T_0, T_1, T_2, T_3 be subtrees.

- z, y, x: full picture $T_0, z, T_1, y, T_2, x, T_3$ (in-order traversal).

Similarly for x, y, z case. This is called **single rotation**!
Correctness

Claims

- Rotation design \Rightarrow binary search tree.
Correctness

Claims

- Rotation design \Rightarrow binary search tree. in-order order
Correctness

Claims

- Rotation design \Rightarrow binary search tree. in-order order
- Tri-node operation rebalance z, and keep y, x balanced.
Correctness

Claims

- Rotation design \(\Rightarrow \) binary search tree. in-order order
- Tri-node operation rebalance \(z \), and keep \(y, x \) balanced.
- The new root of the subtree \(b \) has the same height of \(z \) before the insertion operation. Thus, all the remaining nodes are also balanced.
Correctness

Claims

- Rotation design \Rightarrow binary search tree. in-order order
- Tri-node operation rebalance z, and keep y, x balanced.
- The new root of the subtree b has the same height of z before the insertion operation. Thus, all the remaining nodes are also balanced.
- This suggests that one only need to do the tri-node operation once.
Correctness

Claims

- Rotation design \Rightarrow binary search tree. in-order order
- Tri-node operation rebalance z, and keep y, x balanced.
- The new root of the subtree b has the same height of z before the insertion operation. Thus, all the remaining nodes are also balanced.
- This suggests that one only need to do the tri-node operation once.
Correctness: The single-rotation case!

Claims

- z, y, x: full picture $T_0, z, T_1, y, T_2, x, T_3$ (in-order traversal).
Correctness: The single-rotation case!

Claims

▸ z, y, x: full picture $T_0, z, T_1, y, T_2, x, T_3$ (in-order traversal).
▸ Tri-node operation rebalance z, and keep y, x balanced.
▸ The new root of the subtree b has the same height of z before the insertion operation. Thus, all the remaining nodes are also balanced.
Unbalance Nodes: removal!

Analyze possible cases of unbalanced nodes

- Removal’s affect on the height reduces to case 1. Let \(w \) be the removed node. \(w \) must have an external child.
Analyze possible cases of unbalanced nodes

- Removal’s affect on the height reduces to case 1. Let w be the removed node. w must have an external child.
- Remove w could decrease the height of some subtree. However, with at most 1 unbalanced node (z). Why?
Unbalance Nodes: removal!

Analyze possible cases of unbalanced nodes

- Removal’s affect on the height reduces to case 1. Let w be the removed node. w must have an external child.
- Remove w could decrease the height of some subtree. However, with at most 1 unbalanced node (z). Why?
- Let y be z’s child with higher height. Let x be y’s child with higher height (could be a tie).
Unbalance Nodes: removal!

Analyze possible cases of unbalanced nodes

- Removal’s affect on the height reduces to case 1. Let w be the removed node. w must have an external child.
- Remove w could decrease the height of some subtree. However, with at most 1 unbalanced node (z). Why?
- Let y be z’s child with higher height. Let x be y’s child with higher height (could be a tie).
- Claim: x, y are not w’s ancestor. Why?
Cont’d: Removal

Implementation & Complexity

1 Find the unbalanced \(z \) if any and the \(y, x \).
Cont’d: Removal

Implementation & Complexity

1. Find the unbalanced z if any and the y, x. $O(h_1)$.
Cont’d: Removal

Implementation & Complexity

1. Find the unbalanced z if any and the y, x. $O(h_1)$.

2. Determine the in-order relationship of z, y, x.

Correctness:
- Tri-node operation rebalance z, and keep y, x balanced.
- The height of b, however, might decrease by one. Thus need to repeat the procedure until reach the root.
Cont’d: Removal

Implementation & Complexity

1. Find the unbalanced z if any and the y, x. $O(h_1)$.
2. Determine the in-order relationship of z, y, x. $O(1)$
Cont’d: Removal

Implementation & Complexity

1. Find the unbalanced z if any and the y, x. $O(h_1)$.
2. Determine the in-order relationship of z, y, x. $O(1)$
3. Perform tri-node operation.
Cont’d: Removal

Implementation & Complexity

1. Find the unbalanced z if any and the y, x. $O(h_1)$.
2. Determine the in-order relationship of z, y, x. $O(1)$
3. Perform tri-node operation. $O(1)$.

Correctness

▶ Tri-node operation rebalance z, and keep y, x balanced.
▶ The height of b, however, might decrease by one. Thus need to repeat the procedure until reach the root.
Cont’d: Removal

Implementation & Complexity

1. Find the unbalanced z if any and the y, x. $O(h_1)$.
2. Determine the in-order relationship of z, y, x. $O(1)$
3. Perform tri-node operation. $O(1)$.
4. Along the path of the new root b of the subtree to its ancestors, repeat Step 1-3.
Cont’d: Removal

Implementation & Complexity

1. Find the unbalanced z if any and the y, x. $O(h_1)$.
2. Determine the in-order relationship of z, y, x. $O(1)$.
3. Perform tri-node operation. $O(1)$.
4. Along the path of the new root b of the subtree to its ancestors, repeat Step 1-3.
5. In total, $O(h_1 + h_2 + \cdots) = O(h) = O(\log(n))$.

Correctness

▶ Tri-node operation rebalance z, and keep y, x balanced.

▶ The height of b, however, might decrease by one. Thus need to repeat the procedure until reach the root.
Cont’d: Removal

Implementation & Complexity

1. Find the unbalanced z if any and the y, x. $O(h_1)$.
2. Determine the in-order relationship of z, y, x. $O(1)$
3. Perform tri-node operation. $O(1)$.
4. Along the path of the new root b of the subtree to its ancestors, repeat Step 1-3.
5. In total, $O(h_1 + h_2 + \cdots) = O(h) = O(\log(n))$.

Correctness

▶ Tri-node operation rebalance z, and keep y, x balanced.
Cont’d: Removal

Implementation & Complexity

1. Find the unbalanced \(z\) if any and the \(y, x\). \(O(h_1)\).
2. Determine the in-order relationship of \(z, y, x\). \(O(1)\)
3. Perform tri-node operation. \(O(1)\).
4. Along the path of the new root \(b\) of the subtree to its ancestors, repeat Step 1-3.
5. In total, \(O(h_1 + h_2 + \cdots) = O(h) = O(\log(n))\).

Correctness

- Tri-node operation rebalance \(z\), and keep \(y, x\) balanced.
- The height of \(b\), however, might decrease by one. Thus need to repeat the procedure until reach the root.