Lecture 02/15/16

Lecturer: Xiaodi Wu

February 15th, 2016
AVL tree: Update

Updates like BST
Except, we might break the height-balance property. Need additional effort to re-balance it!
AVL tree: Update

Updates like BST

Except, we might break the height-balance property. Need additional effort to re-balance it!
AVL tree: Update

Updates like BST

Except, we might break the height-balance property. Need additional effort to re-balance it!
Unbalance Nodes: insertion!

Analyze possible cases of unbalanced nodes

- Let w be the inserted node. Follow the path from w to the root (update height). How?
Unbalance Nodes: insertion!

Analyze possible cases of unbalanced nodes

- Let w be the inserted node. Follow the path from w to the root (update height). How?
- Find the first unbalanced node z. Let y be z’s child with higher height. Let x be y’s child with higher height.
Unbalance Nodes: insertion!

Analyze possible cases of unbalanced nodes

- Let w be the inserted node. Follow the path from w to the root (update height). How?
- Find the first unbalanced node z. Let y be z's child with higher height. Let x be y's child with higher height.
- Claim: x, y, z are w's ancestor. (x could be w itself.) Why?
Unbalance Nodes: insertion!

Analyze possible cases of unbalanced nodes

- Let w be the inserted node. Follow the path from w to the root (update height). How?
- Find the first unbalanced node z. Let y be z’s child with higher height. Let x be y’s child with higher height.
- Claim: x, y, z are w’s ancestor. (x could be w itself.) Why?
- Understand how heights are updated. Insertion can only increase the height of some subtree.
Unbalance Nodes: insertion!

Analyze possible cases of unbalanced nodes

- Let \(w \) be the inserted node. Follow the path from \(w \) to the root (update height). How?
- Find the first unbalanced node \(z \). Let \(y \) be \(z \)'s child with higher height. Let \(x \) be \(y \)'s child with higher height.
- Claim: \(x, y, z \) are \(w \)'s ancestor. (\(x \) could be \(w \) itself.) Why?
- Understand how heights are updated. Insertion can only increase the height of some subtree.
- Could be more unbalanced nodes. \(z \) is the first. Why?
Re-balance it through the tri-node operation

Fix the x, y, z in the previous slides

- Let a, b, c be the inorder sequence of x, y, z.
Re-balance it through the tri-node operation

Fix the x, y, z in the previous slides

- Let a, b, c be the inorder sequence of x, y, z.
- Let T_0, T_1, T_2, T_3 be the four sub-trees such that the inorder traversal is $T_0, a, T_1, b, T_2, c, T_3$.
Re-balance it through the tri-node operation

Fix the x, y, z in the previous slides

- Let a, b, c be the inorder sequence of x, y, z.
- Let T_0, T_1, T_2, T_3 be the four sub-trees such that the inorder traversal is $T_0, a, T_1, b, T_2, c, T_3$.
- Change the tree to the following shape.
Tri-node operation based on x, y, z

Properties of x, y, z

- z: the first unbalanced node. Let y be z’s child with higher height. Let x be y’s child with higher height (could be a tie).
Tri-node operation based on x, y, z

Properties of x, y, z

- z: the first unbalanced node. Let y be z’s child with higher height. Let x be y’s child with higher height (could be a tie).
- Then there are four possible relative relations of x, y, z in the in-order traversal. Why not 6?
Tri-node operation based on x, y, z

Properties of x, y, z

- z: the first unbalanced node. Let y be z's child with higher height. Let x be y's child with higher height (could be a tie).
- Then there are four possible relative relations of x, y, z in the in-order traversal. Why not 6? z cannot be in the middle.
Tri-node operation based on x, y, z

Properties of x, y, z

- z: the first unbalanced node. Let y be z’s child with higher height. Let x be y’s child with higher height (could be a tie).
- Then there are four possible relative relations of x, y, z in the in-order traversal. Why not 6? z cannot be in the middle.
 - z, y, x.
 - x, y, z.
 - z, x, y.
 - y, x, z.
Cases: y in the middle

Let T_0, T_1, T_2, T_3 be subtrees.

- z, y, x: full picture $T_0, z, T_1, y, T_2, x, T_3$ (in-order traversal).
Cases: y in the middle

Let T_0, T_1, T_2, T_3 be subtrees.

- z, y, x: full picture $T_0, z, T_1, y, T_2, x, T_3$ (in-order traversal).

```
                      z
                     /   \
                    /     \
                   /       \
                  /         \
                 /           \
                /             \
               /               \
              /                 \
             /                   \
            /                     \
           /                       \
          /                         \
         /                           \
        /                             \
       /                               \
      /                                 \
     /                                   \
    /                                     \
   /                                       \
  /                                         \
 /                                           \
/                                             \

T_0  z  T_1  y  T_2  x  T_3
```
Cases: y in the middle after balance

Let T_0, T_1, T_2, T_3 be subtrees.

- z, y, x: full picture $T_0, z, T_1, y, T_2, x, T_3$ (in-order traversal).
Cases: y in the middle after balance

Let T_0, T_1, T_2, T_3 be subtrees.

- z, y, x: full picture $T_0, z, T_1, y, T_2, x, T_3$ (in-order traversal).

Similarly for x, y, z case. This is called **single rotation**!
Cases: x in the middle

Let T_0, T_1, T_2, T_3 be subtrees.

- z, x, y: full picture $T_0, z, T_1, x, T_2, y, T_3$ (in-order traversal).
Cases: x in the middle

Let T_0, T_1, T_2, T_3 be subtrees.

\rightarrow z, x, y: full picture $T_0, z, T_1, x, T_2, y, T_3$ (in-order traversal).
Cases: x in the middle after balance

Let T_0, T_1, T_2, T_3 be subtrees.

- z, x, y: full picture $T_0, z, T_1, x, T_2, y, T_3$ (in-order traversal).
Cases: x in the middle after balance

Let T_0, T_1, T_2, T_3 be subtrees.

- z, x, y: full picture $T_0, z, T_1, x, T_2, y, T_3$ (in-order traversal).
Cases: x in the middle after balance

Let T_0, T_1, T_2, T_3 be subtrees.

- z, x, y: full picture T_0, z, T_1, x, T_2, y, T_3 (in-order traversal).

Similarly for y, x, z case. This is called **double rotation**!
Find the unbalanced z if any and the y, x.

$O(h) = \Theta(\log(n))$.

$O(1)$.

Perform tri-node operation.

$O(1)$.

Only need to perform once. Update the heights.

In total, $O(\log(n))$.

Implementation & Complexity
Find the unbalanced z if any and the y, x. $O(h) = O(\log(n))$.
Implementation & Complexity

- Find the unbalanced z if any and the y, x. $O(h) = O(\log(n))$.
- Determine the in-order relationship of z, y, x.
Implementation & Complexity

- Find the unbalanced z if any and the y, x. $O(h) = O(\log(n))$.
- Determine the in-order relationship of z, y, x. $O(1)$
Find the unbalanced z if any and the y, x. $O(h) = O(\log(n))$.

Determine the in-order relationship of z, y, x. $O(1)$

Perform tri-node operation.
Implementation & Complexity

- Find the unbalanced \(z \) if any and the \(y, x \). \(O(h) = O(\log(n)) \).
- Determine the in-order relationship of \(z, y, x \). \(O(1) \)
- Perform tri-node operation. \(O(1) \).
Implementation & Complexity

- Find the unbalanced z if any and the y, x. $O(h) = O(\log(n))$.
- Determine the in-order relationship of z, y, x. $O(1)$
- Perform tri-node operation. $O(1)$.
- Only need to perform once. Update the heights.
Implementation & Complexity

- Find the unbalanced z if any and the y, x. $O(h) = O(\log(n))$.
- Determine the in-order relationship of z, y, x. $O(1)$
- Perform tri-node operation. $O(1)$.
- Only need to perform once. Update the heights. $O(1)$.
Implementation & Complexity

- Find the unbalanced z if any and the y, x. $O(h) = O(\log(n))$.
- Determine the in-order relationship of z, y, x. $O(1)$
- Perform tri-node operation. $O(1)$.
- Only need to perform once. Update the heights. $O(1)$.
- In total, $O(\log(n))$.