Lecture 02/12/16

Lecturer: Xiaodi Wu

February 12th, 2016
Problems with BST

Complexity $O(h)$

h could be $O(\log(n))$ or $O(n)$. The worst case complexity is $O(n)$.

Candidate solution: AVL tree.
Problems with BST

Complexity $O(h)$

h could be $O(\log(n))$ or $O(n)$. The worst case complexity is $O(n)$.

Is there a way to force h to be $O(\log(n))$ while still having efficient insertion and removal operation?
Problems with BST

Complexity $O(h)$

h could be $O(\log(n))$ or $O(n)$. The worst case complexity is $O(n)$.

Is there a way to force h to be $O(\log(n))$ while still having efficient insertion and removal operation?

Candidate solution: AVL tree.
AVL tree

Height-balance Property
For every internal node v of T, the heights of the children of v can differ by at most 1.
Height-balance Property

For every internal node v of T, the heights of the children of v can differ by at most 1.

AVL Tree

Any binary search tree with the **height-balance property** is called an AVL tree, named after the initials of the inventors.
Height-balance Property
For every internal node v of T, the heights of the children of v can differ by at most 1.

AVL Tree
Any binary search tree with the **height-balance property** is called an AVL tree, named after the initials of the inventors.
Remember the goal is to hope $h = O(\log(n))$.
AVL trees
AVL tree: \(h = O(\log(n)) \)

Height-balance Property

- Why not force the same height of the children?
AVL tree: $h = O(\log(n))$

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2?
AVL tree: \(h = O(\log(n)) \)

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.
AVL tree: $h = O(\log(n))$

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.

The height h of an AVL tree of n nodes

- Basically, find the relationship between h and n.
AVL tree: \(h = O(\log(n)) \)

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.

The height \(h \) of an AVL tree of \(n \) nodes

- Basically, find the relationship between \(h \) and \(n \).
- Let \(n(h) \) be the minimum \# nodes in a tree of height \(h \).
AVL tree: \(h = O(\log(n)) \)

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.

The height \(h \) of an AVL tree of \(n \) nodes

- Basically, find the relationship between \(h \) and \(n \).
- Let \(n(h) \) be the minimum \# nodes in a tree of height \(h \).
- It suffices to show that \(n(h) = 2^{\Omega(h)} \).
AVL tree: \(h = O(\log(n)) \)

Height-balance Property

- Why not force the same height of the children?
- How about allow the difference of heights to be 2? in the assignment 3.

The height \(h \) of an AVL tree of \(n \) nodes

- Basically, find the relationship between \(h \) and \(n \).
- Let \(n(h) \) be the minimum \# nodes in a tree of height \(h \).
- It suffices to show that \(n(h) = 2^{\Omega(h)} \).
- \(n \geq 2^{ch} \Rightarrow h \leq \frac{1}{c} \log(n) \in O(\log(n)) \).
Proof: \(h = O(\log(n)) \)

Theorem

The height of an AVL tree storing \(n \) items is \(O(\log(n)) \).

Proof.

- \(n(1) = 1, \ n(2) = 2. \)
Proof: $h = O(\log(n))$

Theorem

The height of an AVL tree storing n items is $O(\log(n))$.

Proof.

- $n(1) = 1, n(2) = 2$.
- How about $n(3)$? What is the worst case?
Proof: \(h = O(\log(n)) \)

Theorem

The height of an AVL tree storing \(n \) items is \(O(\log(n)) \).

Proof.

- \(n(1) = 1, \ n(2) = 2. \)
- How about \(n(3) \)? What is the worst case?
- \(n(3) = 1 + n(1) + n(2)! \)
Proof: $h = O(\log(n))$

Theorem

The height of an AVL tree storing n items is $O(\log(n))$.

Proof.

- $n(1) = 1$, $n(2) = 2$.
- How about $n(3)$? What is the worst case?
- $n(3) = 1 + n(1) + n(2)!$
- In general,

\[n(h) = 1 + n(h - 1) + n(h - 2). \]
Proof: \(h = O(\log(n)) \)

Theorem

The height of an AVL tree storing \(n \) items is \(O(\log(n)) \).

Proof.

- \(n(1) = 1, \ n(2) = 2. \)
- How about \(n(3) \)? What is the worst case?
- \(n(3) = 1 + n(1) + n(2)! \)
- In general,

\[
n(h) = 1 + n(h - 1) + n(h - 2).
\]

- \(n(h) \) is a strictly increasing function of \(h \). Thus

\[
n(h) > 2 \times n(h - 2).
\]
Proof: \(h = O(\log(n)) \), cont’d

- In general, for any \(i \) such that \(h - 2i \geq 1 \), we have

\[
n(h) > 2^i \times n(h - 2i).
\]
Proof: \(h = O(\log(n)) \), cont’d

- In general, for any \(i \) such that \(h - 2i \geq 1 \), we have
 \[
 n(h) > 2^i \times n(h - 2i).
 \]

- One can choose \(i = \lceil h/2 \rceil - 1 \). Thus \(n(h - 2i) \) could be \(n(1) \) or \(n(2) \). We have,
 \[
 n(h) > 2^{\lceil h/2 \rceil - 1} n(1) \in 2^{\Omega(h)}.
 \]
Proof: $h = O(\log(n))$, cont’d

- In general, for any i such that $h - 2i \geq 1$, we have

 $$n(h) > 2^i \times n(h - 2i).$$

- One can choose $i = \lceil h/2 \rceil - 1$. Thus $n(h - 2i)$ could be $n(1)$ or $n(2)$. We have,

 $$n(h) > 2^{\lceil h/2 \rceil - 1} n(1) \in 2^\Omega(h).$$

- Precisely, we could have

 $$h < 2 \log(n) + 2.$$
AVL tree: Update

Updates like BST
Except, we might break the height-balance property. Need additional effort to re-balance it!
AVL tree: Update

Updates like BST

Except, we might break the height-balance property. Need additional effort to re-balance it!
AVL tree: Update

Updates like BST

Except, we might break the height-balance property. Need additional effort to re-balance it!