Lecture 02/03/16

Lecturer: Xiaodi Wu

February 3rd, 2016
Binary Search Tree: Insertion

Insert key k into a binary search tree T

- First, $w = \text{TreeSearch}(k, T.\text{root}())$.

Binary Search Tree: Insertion

Insert key k into a binary search tree T

- First, $w =$ TreeSearch(k, T.root()).
- If k is not in T, i.e., w is an external node. We replace w by an internal node storing (k, e) and add two external children to w.
Binary Search Tree: Insertion

Insert key k into a binary search tree T

- First, $w = \text{TreeSearch}(k, \text{T.root()})$.
- If k is not in T, i.e., w is an external node. We replace w by an internal node storing (k, e) and add two external children to w.
- If k is in T, i.e., w is an internal node. Call TreeSearch(k, rightChild(w)) and apply the above algorithm recursively. (duplicate the key)
Insertion in binary search trees

Algorithm `insertItem(k, e, v, T)`

Input: a search key-element \((k, e)\) and a node \(v\) of a binary search tree \(T\).

Output: a updated \(T\).

\[w \leftarrow \text{TreeSearch}(k, v) \]

- **if** \(w\) is external **then**
 - Replace \(w\) by an internal node storing \((k, e)\) with two external children. Return.
- **else**
 - `insertItem(k, e, T.rightChild(w), T).`

end if
Algorithm insertItem\((k, e, ν, T)\)
Input: a search key-element \((k, e)\) and a node \(ν\) of a binary search tree \(T\).
Output: a updated \(T\).
\(w ← TreeSearch(k, ν)\)
if \(w\) is external then
 Replace \(w\) by an internal node storing \((k, e)\) with two external children. Return.
else
 insertItem\((k, e, T.\text{rightChild}(w), T)\).
end if

Time: \(O(h)\) could from \(O(\log n)\) to \(O(n)\).
Algorithm `insertItem(k, e, v, T)`

Input: a search key-element \((k, e)\) and a node \(v\) of a binary search tree \(T\).

Output: a updated \(T\).

\[w \leftarrow \text{TreeSearch}(k, v) \]

if \(w\) is external **then**

 Replace \(w\) by an internal node storing \((k, e)\) with two external children. Return.

else

 `insertItem(k, e, T.rightChild(w), T)`.

end if

- **Time**: \(O(h)\) could from \(O(\log n)\) to \(O(n)\).
- **Correctness**: rely on the correctness of TreeSearch.
Binary Search Trees: insert(30)
Binary Search Trees: insert(30)
Binary Search Trees: insert(29)
Binary Search Trees: insert(29)
Binary Search Trees: insert(29)
Binary Search Tree: Insertion

More Questions

- One can also call TreeSearch(k, leftChild(w)). Why?
Binary Search Tree: Insertion

More Questions

- One can also call TreeSearch(k, leftChild(w)). Why?
- Alternative way to handle duplication of the key?
Binary Search Tree: Insertion

More Questions

- One can also call TreeSearch(k, leftChild(w)). Why?
- Alternative way to handle duplication of the key? A counter at each node!
Binary Search Tree: Removal

Remove key k out of a binary search tree T

- First, w = $\text{TreeSearch}(k, T.\text{root}())$.
Binary Search Tree: Removal

Remove key \(k \) out of a binary search tree \(T \)

- First, \(w = \text{TreeSearch}(k, T.\text{root}()) \).
- If \(k \) is not in \(T \), i.e., \(w \) is an external node. We have nothing to remove. Done!
Binary Search Tree: Removal

Remove key k out of a binary search tree T

- First, $w = \text{TreeSearch}(k, T.\text{root}())$.
- If k is not in T, i.e., w is an external node. We have nothing to remove. Done!
- Otherwise, w is an internal node. We distinguish the following two cases.
 - (1) at least one of the children of w is an external node.
 - (2) both of the children of w are internal nodes.
Case 1

- (1) at least one of the children of w is an external node.
Binary Search Tree: Removal

Case 1

- (1) at least one of the children of w is an external node.
- Let z be the external child. Let y be the other child.
- Remove z, w and connect y to w’s parent replacing w’s position.

Correctness: maintain the binary search tree property.

Time: $O(h)$.
Binary Search Tree: Removal

Case 1

- (1) at least one of the children of w is an external node.
- Let z be the external child. Let y be the other child.
- Remove z, w and connect y to w’s parent replacing w’s position.
- Correctness: maintain the binary search tree property.
Binary Search Tree: Removal

Case 1

» (1) at least one of the children of \(w \) is an external node.
» Let \(z \) be the external child. Let \(y \) be the other child.
» Remove \(z, w \) and connect \(y \) to \(w \)'s parent replacing \(w \)'s position.
» Correctness: maintain the binary search tree property.
» Time: \(O(h) \).
Binary Search Trees: Remove(32)
Binary Search Trees: Remove(32)
Binary Search Trees: Remove(32)
Binary Search Tree: Removal

Case 2

- (2) both of the children of \(w \) are internal nodes.
Case 2

- (2) both of the children of w are internal nodes.
- Find y: the first internal node that follows w in an inorder traversal. How?
Case 2

- (2) both of the children of \(w \) are internal nodes.
- Find \(y \): the first internal node that follows \(w \) in an inorder traversal. How?
- Such \(y \) must have an external left child. Why?
Case 2

- (2) both of the children of w are internal nodes.
- Find y: the first internal node that follows w in an inorder traversal. How?
- Such y must have an external left child. Why?
- Two Steps: (a) replace w by y. (b) Remove(y).
Binary Search Tree: Removal

Case 2

- (2) both of the children of w are internal nodes.
- Find y: the first internal node that follows w in an inorder traversal. How?
- Such y must have an external left child. Why?
- Two Steps: (a) replace w by y. (b) Remove(y).
- Correctness: Step (a)?
Binary Search Tree: Removal

Case 2

- (2) both of the children of w are internal nodes.
- Find y: the first internal node that follows w in an inorder traversal. How?
- Such y must have an external left child. Why?
- Two Steps: (a) replace w by y. (b) Remove(y).
- Correctness: Step (a)? by the inorder property.
Binary Search Tree: Removal

Case 2

- (2) both of the children of w are internal nodes.
- Find y: the first internal node that follows w in an inorder traversal. How?
- Such y must have an external left child. Why?
- Two Steps: (a) replace w by y. (b) Remove(y).
- Correctness: Step (a)? by the inorder property.
- Step (b)?
Binary Search Tree: Removal

Case 2

▶ (2) both of the children of w are internal nodes.
▶ Find y: the first internal node that follows w in an inorder traversal. How?
▶ Such y must have an external left child. Why?
▶ Two Steps: (a) replace w by y. (b) Remove(y).
▶ Correctness: Step (a)? by the inorder property.
▶ Step (b)? by the analysis in Case 1
Case 2

- (2) both of the children of w are internal nodes.
- Find y: the first internal node that follows w in an inorder traversal. How?
- Such y must have an external left child. Why?
- Two Steps: (a) replace w by y. (b) Remove(y).
- Correctness: Step (a)? by the inorder property.
- Step (b)? by the analysis in Case 1.
- Time: $O(h)$.

Binary Search Tree: Removal
Binary Search Trees: Remove(65)
Binary Search Trees: Remove(65)
Binary Search Trees: Remove(65)
Describe an algorithm that checks whether T is a valid binary search tree. Analyze the worst-case complexity of your algorithm.

Assume T is a binary search tree and let k be another input. Describe an algorithm that finds one of the closest-to-k keys in the binary tree T. Analyze the worst-case complexity of your algorithm. (Assume all the keys are integers and the distance between two keys is the absolute value of their difference.)