Search in a sorted table

Search a key \(k \) in a table of size \(n \). Trivial \(O(n) \).
Search in a sorted table

- Search a key k in a table of size n. Trivial $O(n)$.
- In a sorted table (non-decreasing order): $O(\log(n))$. **Binary Search!**
Search in a sorted table

- Search a key k in a table of size n. Trivial $O(n)$.
- In a sorted table (non-decreasing order): $O(\log(n))$. **Binary Search!**

How?

- Maintain three pointers: low, high, and $\text{mid}= (\text{low}+\text{high})/2$.
Search in a sorted table

- Search a key k in a table of size n. Trivial $O(n)$.
- In a sorted table (non-decreasing order): $O(\log(n))$. **Binary Search**!

How?

- Maintain three pointers: low, high, and mid = (low+high)/2.
- Compare k with the key of the mid. If $k = \text{key}(\text{mid})$, return mid.
- If $k < \text{key}(\text{mid})$, then update the pointer $\text{low} \leftarrow \text{low}$, $\text{high} \leftarrow \text{mid} - 1$.
- If $k > \text{key}(\text{mid})$, then update the pointer $\text{low} \leftarrow \text{mid} + 1$, $\text{high} \leftarrow \text{high}$.
Algorithm BinarySearch($S, k, low, high$)

Input: an ordered vector S storing n items.
Output: an element with key k within $[low, high]$; otherwise, NO_SUCH_KEY.

if low > high then
 return NO_SUCH_KEY
else
 mid ← $(low + high)/2$
 if $k = key(mid)$ then
 return mid.
 else if $k < key(mid)$ then
 return BinarySearch($S, k, low, mid-1$).
 else
 return BinarySearch($S, k, mid+1, high$).
end if
end if
Binary Search: time and correctness

Time

- Watch the difference between low and high. Shrink to half in each recursive call.

Correctness

- Maintain an invariant: the key is either within \([\text{low}, \text{high}]\) or does not exist.
- Invariant remains during recursive calls.
Binary Search: time and correctness

Time

- Watch the difference between low and high. Shrink to half in each recursive call.
- $O(\log(high - low)) = O(\log(n))$.

Correctness

- Maintain an invariant: the key is either within $[low, high]$ or does not exist.
- Invariant remains during recursive calls.
Binary Search: time and correctness

Time

- Watch the difference between low and high. Shrink to half in each recursive call.
- \(O(\log(high - low)) = O(\log(n)) \).

Correctness

- Maintain an invariant: the key is either within \([low, high]\) or does not exist.
- Invariant remains during recursive calls.
Binary Search Tree

Definition

- **Binary Search Tree**: for every internal node e, the elements in the left subtree are $\leq e$, and the elements in the right subtree are $\geq e$.
- Goal: binary search on a tree data structure.
Binary Search Tree

Definition

- **Binary Search Tree**: for every internal node e, the elements in the left subtree are $\leq e$, and the elements in the right subtree are $\geq e$.
- Goal: binary search on a tree data structure.

Search

- Compare k with the key of the root. If $k = \text{key}(\text{root})$, return root.
- If $k < \text{key}(\text{root})$, then search in the left subtree.
- If $k > \text{key}(\text{root})$, then search in the right subtree.
Binary Search Trees
Algorithm TreeSearch(k, v)
Input: a search key k and a node v of a binary search tree T.
Output: the node with key k or an external node, i.e., NO_SUCH_KEY.
if v is external then
 return $v \Rightarrow$ NO_SUCH_KEY
else
 if $k = \text{key}(v)$ then
 return v.
 else if $k < \text{key}(v)$ then
 return TreeSearch(k, T.leftChild(v)).
 else
 return TreeSearch(k, T.rightChild(v)).
end if
end if

▶ Time: $O(h)$ could from $O(\log n)$ to $O(n)$.
Search in binary search trees

Algorithm TreeSearch\((k, v)\)

Input: a search key \(k\) and a node \(v\) of a binary search tree \(T\).
Output: the node with key \(k\) or an external node, i.e., NO_SUCH_KEY.

if \(v\) is external then
 return \(v \Rightarrow \text{NO_SUCH_KEY}\)
else
 if \(k = \text{key}(v)\) then
 return \(v\).
 else if \(k < \text{key}(v)\) then
 return TreeSearch\((k, T.\text{leftChild}(v))\).
 else
 return TreeSearch\((k, T.\text{rightChild}(v))\).
 end if
end if

▷ Time: \(O(h)\) could from \(O(\log n)\) to \(O(n)\).
Binary Search Trees: TreeSearch(78, root)
Inorder Traversal of Binary Search Trees

- Inorder Traversal leads to a nondecreasing sequence.

 \[17, 28, 29, 32, 44, 54, 66, 76, 78, 80, 82, 88, 97]\n
- Given a binary tree: inorder traversal nondecreasing \iff binary search tree.
Binary Search Tree Properties

Inorder Traversal of Binary Search Trees

- Inorder Traversal leads to a nondecreasing sequence.

\[17, 28, 29, 32, 44, 54, 66, 76, 78, 80, 82, 88, 97\]

- Given a binary tree: inorder traversal nondecreasing \(\iff\) binary search tree.

Binary Search Tree vs Heap

- Binary Search Property vs Heap-Order Property
Binary Search Tree Properties

Inorder Traversal of Binary Search Trees

- Inorder Traversal leads to a nondecreasing sequence.

 \[17, 28, 29, 32, 44, 54, 66, 76, 78, 80, 82, 88, 97\]

- Given a binary tree: inorder traversal nondecreasing \(\iff\) binary search tree.

Binary Search Tree vs Heap

- Binary Search Property vs Heap-Order Property
- Any binary tree vs Complete Binary Tree
Binary Search Tree: Insertion

Insert key k into a binary search tree T

- First, $w =$ TreeSearch(k, T.root()).
Binary Search Tree: Insertion

Insert key k into a binary search tree T

- First, $w = \text{TreeSearch}(k, T.\text{root}())$.
- If k is not in T, i.e., w is an external node. We replace w by an internal node storing (k, e) and add two external children to w.

(duplicate the key)
Insert key k into a binary search tree T

- First, w = TreeSearch(k, T.root()).
- If k is not in T, i.e., w is an external node. We replace w by an internal node storing (k, e) and add two external children to w.
- If k is in T, i.e., w is an internal node. Call TreeSearch(k, rightChild(w)) and apply the above algorithm recursively. (duplicate the key)
Algorithm insertItem(k, e, v, T)

Input: a search key-element (k, e) and a node v of a binary search tree T.

Output: a updated T.

$w \leftarrow TreeSearch(k, v)$

if w is external *then*

Replace w by an internal node storing (k, e) with two external children. Return.

else

insertItem($k, e, T.\text{rightChild}(w), T$).

end if
Algorithm insertItem(k, e, v, T)
Input: a search key-element (k, e) and a node v of a binary search tree T.
Output: a updated T.

$w \leftarrow TreeSearch(k, v)$

if w is external then
 Replace w by an internal node storing (k, e) with two external children. Return.
else
 insertItem($k, e, T.rightChild(w), T$).
end if

Time: $O(h)$ could from $O(\log n)$ to $O(n)$.
Algorithm insertItem(k, e, v, T)

Input: a search key-element (k, e) and a node v of a binary search tree T.
Output: a updated T.

$w \leftarrow TreeSearch(k, v)$

if w is external **then**

Replace w by an internal node storing (k, e) with two external children. Return.

else

insertItem($k, e, T.$rightChild($w), T$).

end if

- **Time:** $O(h)$ could from $O(\log n)$ to $O(n)$.
- **Correctness:** rely on the correctness of TreeSearch.
Binary Search Trees: insert(30)
Binary Search Trees: insert(30)
Binary Search Trees: insert(29)
Binary Search Trees: insert(29)
Binary Search Trees: insert(29)