Lecture 01/29/16

Lecturer: Xiaodi Wu

January 29th, 2016
Heap Example: only keys

```
[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8, 22, 24]
```
Heap Example: only keys

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8, 22, 24]
Heap: Bottom-Up Build

Building a Heap of n key-element pairs

- The first part of the heap sort.
Heap: Bottom-Up Build

Building a Heap of n key-element pairs

- The first part of the heap sort.
- Approach 1: insert n key-element pairs one by one. $O(n \log n)$
Heap: Bottom-Up Build

Building a Heap of n key-element pairs

- The first part of the heap sort.
- Approach 1: insert n key-element pairs one by one. $O(n \log n)$

\[
\sum_{i=1}^{n} \log(i) \in O(n \log n)
\]
Building a Heap of n key-element pairs

- The first part of the heap sort.
- Approach 1: insert n key-element pairs one by one. $O(n \log n)$

$$\sum_{i=1}^{n} \log(i) \in O(n \log n), \Omega(n \log n)$$
Heap: Bottom-Up Build

Building a Heap of n key-element pairs

- The first part of the heap sort.
- Approach 1: insert n key-element pairs one by one. $O(n \log n)$

$$\sum_{i=1}^{n} \log(i) \in O(n \log n), \Omega(n \log n)?$$

- Can we improve the efficiency if n key-element pairs have already been stored in the array $A[0 \cdots n - 1]$?
Heap: Bottom-Up Build

Building a Heap of n key-element pairs

- The first part of the heap sort.
- Approach 1: insert n key-element pairs one by one. $O(n \log n)$

$$\sum_{i=1}^{n} \log(i) \in O(n \log n), \Omega(n \log n)$$

- Can we improve the efficiency if n key-element pairs have already been stored in the array $A[0 \cdots n - 1]$?
- Use the array-based implementation, and use the bottom-up build of heaps, $O(n)$!
Building a Heap of \(n \) key-element pairs

- The first part of the heap sort.
- Approach 1: insert \(n \) key-element pairs one by one. \(O(n \log n) \)

\[
\sum_{i=1}^{n} \log(i) \in O(n \log n), \Omega(n \log n)\?
\]

- Can we improve the efficiency if \(n \) key-element pairs have already been stored in the array \(A[0 \cdots n - 1] \)?
- Use the array-based implementation, and use the bottom-up build of heaps, \(O(n)! \) optimal? \(\Omega(n) \)?
Heap: Bottom-Up Build

Building a Heap of \(n \) key-element pairs

- The first part of the heap sort.
- Approach 1: insert \(n \) key-element pairs one by one. \(O(n \log n) \)

\[
\sum_{i=1}^{n} \log(i) \in O(n \log n), \Omega(n \log n)\
\]

- Can we improve the efficiency if \(n \) key-element pairs have already been stored in the array \(A[0 \cdots n-1] \)?
- Use the array-based implementation, and use the bottom-up build of heaps, \(O(n)! \) optimal? \(\Omega(n) \)?
- Imply any improvement of the heap sort?
Bottom-Up Heapify

Algorithm BottomUpHeapify(A)
Input: an n-element array A.
Output: a valid heap stored in A
Note: array-based implementation of binary trees
Algorithm BottomUpHeapify(A)
Input: an n-element array A.
Output: a valid heap stored in A
Note: array-based implementation of binary trees
if A is empty then
 return an empty heap (a single external node)
end if
Algorithm BottomUpHeapify(A)
Input: an \(n \)-element array \(A \).
Output: a valid heap stored in \(A \)
Note: array-based implementation of binary trees

if \(A \) is empty then
 return an empty heap (a single external node)
end if

Let \(u \) be the root of the subtree \(A \). Let \(k \) be its key.
Let \(A_L, A_R \) be the left-subtree and the right-subtree of \(u \) respectively.
Algorithm BottomUpHeapify(A)
Input: an n-element array A
Output: a valid heap stored in A
Note: array-based implementation of binary trees
if A is empty then
 return an empty heap (a single external node)
end if
Let u be the root of the subtree A. Let k be its key.
Let A_L, A_R be the left-subtree and the right-subtree of u respectively.
$T_L \leftarrow$ BottomUpHeapify(A_L).
$T_R \leftarrow$ BottomUpHeapify(A_R).
Create Binary Tree with root u and T_L the left-subtree, T_R the right-subtree.
Bottom-Up Heapify

Algorithm BottomUpHeapify(A)

Input: an \(n \)-element array \(A \).

Output: a valid heap stored in \(A \).

Note: array-based implementation of binary trees

if \(A \) is empty **then**

return an empty heap (a single external node)

end if

Let \(u \) be the root of the subtree \(A \). Let \(k \) be its key.

Let \(A_L, A_R \) be the left-subtree and the right-subtree of \(u \) respectively.

\(T_L \leftarrow \text{BottomUpHeapify}(A_L) \).

\(T_R \leftarrow \text{BottomUpHeapify}(A_R) \).

Create Binary Tree with root \(u \) and \(T_L \) the left-subtree, \(T_R \) the right-subtree.

Down-Heap Bubbling on \(u \) if necessary.
Heap Example: only keys

```
[14, 9, 8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20]
```
Heap Example: only keys

[14, 9, 8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20]
Heap Example: only keys

[14, 9, 8, 15, 4, 6, 20, 16, 25, 5, 12, 11, 7, 23, 27]
Heap Example: only keys

[14, 9, 8, 15, 4, 6, 20, 16, 25, 5, 12, 11, 7, 23, 27]
Heap Example: only keys

[14, 4, 6, 15, 5, 7, 20, 16, 25, 9, 12, 11, 8, 23, 27]
Heap Example: only keys

[14, 4, 6, 15, 5, 7, 20, 16, 25, 9, 12, 11, 8, 23, 27]
Heap Example: only keys

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8, 23, 27]
Heapify: Correctness & Efficiency

Correctness

- Prove by induction.
Heapify: Correctness & Efficiency

Correctness

- Prove by induction.
- Both subtrees are valid heap. So only need to down-heap bubbling the root. Remember the removeMin() case.
Heapify: Correctness & Efficiency

Correctness

- Prove by induction.
- Both subtrees are valid heap. So only need to down-heap bubbling the root. Remember the removeMin() case.

Efficiency

- What is the worst case complexity?
Heapify: Correctness & Efficiency

Correctness

➢ Prove by induction.
➢ Both subtrees are valid heap. So only need to down-heap bubbling the root. Remember the removeMin() case.

Efficiency

➢ What is the worst case complexity?
➢ What is the worst case for each level?
Heapify: Correctness & Efficiency

Correctness

- Prove by induction.
- Both subtrees are valid heap. So only need to down-heap bubbling the root. Remember the removeMin() case.

Efficiency

- What is the worst case complexity?
- What is the worst case for each level?
- On Level i, 2^i nodes. Each node could down-heap bubbling from level i to the external nodes: $O(h - i)$.

Heapify: Correctness & Efficiency

Correctness

- Prove by induction.
- Both subtrees are valid heap. So only need to down-heap bubbling the root. Remember the removeMin() case.

Efficiency

- What is the worst case complexity?
- What is the worst case for each level?
- On Level i, 2^i nodes. Each node could down-heap bubbling from level i to the external nodes: $O(h - i)$.
- Thus, the total running time is

$$O \left(\sum_{i=0}^{h} 2^i (h - i) \right) = O \left(\sum_{i=0}^{\log(n)} 2^i (\log(n) - i) \right)$$
Efficiency Cont’d

\[\sum_{i=0}^{\log(n)} 2^i (\log(n) - i) = \sum_{i=0}^{\log(n)} 2^{\log(n) - i} i \]

\[= \sum_{i=0}^{\log(n)} i \frac{i}{2^i} \]

\[\leq n \times 2 = 2n \]

The last inequality comes from the bonus problem in assignment 1.
\[
\log(n) \sum_{i=0}^{\log(n)} 2^i (\log(n) - i) = \log(n) \sum_{i=0}^{\log(n)} 2^{\log(n)-i} i \\
= n \sum_{i=0}^{\log(n)} \frac{i}{2^i} \\
\leq n \times 2 = 2n
\]

The last inequality comes from the bonus problem in assignment 1. **Remark:** the textbook uses another (visualized) approach of proving the complexity.
Minqueue v.s. Priority Queue

Similarity

- Queue.
- Find Min: Minqueue $O(1)$ vs Priority Queue $O(1)$.
Minqueue v.s. Priority Queue

Similarity

▷ Queue.
▷ Find Min: Minqueue $O(1)$ vs Priority Queue $O(1)$.

Difference

▷ Minqueue: does not support removeMin().
Minqueue v.s. Priority Queue

Similarity

- Queue.
- Find Min: Minqueue $O(1)$ vs Priority Queue $O(1)$.

Difference

- Minqueue: does not support removeMin().
- Minqueue cannot be directly useful for sorting.
Minqueue v.s. Priority Queue

Similarity

- Queue.
- Find Min: Minqueue $O(1)$ vs Priority Queue $O(1)$.

Difference

- Minqueue: does not support removeMin().
- Minqueue cannot be directly useful for sorting.
- Essential tradeoff?