Vector-based Implementation

Binary-Tree

- $p(v)$: the rank of v stored in array A of size N.
- If v is the root, then $p(v) = 1$.
- If v is the left child of u, then $p(v) = 2p(u)$.
- If v is the right child of u, then $p(v) = 2p(u) + 1$.

Convention: $p(v) =$ index + 1 in storage!

Application to heaps
- The last node of a heap of n keys is indexed n in the array.
- The first empty external node is then indexed $n + 1$.
- Don't need to store external nodes explicitly.
Vector-based Implementation

Binary-Tree

- $p(v)$: the rank of v stored in array A of size N.
- If v is the root, then $p(v) = 1$.
- If v is the left child of u, then $p(v) = 2p(u)$.
- If v is the right child of u, then $p(v) = 2p(u) + 1$.
- **Convention**: $p(v) = \text{index} + 1$ in storage!
Vector-based Implementation

Binary-Tree

- $p(v)$: the rank of v stored in array A of size N.
- If v is the root, then $p(v) = 1$.
- If v is the left child of u, then $p(v) = 2p(u)$.
- If v is the right child of u, then $p(v) = 2p(u) + 1$.
- **Convention:** $p(v) = \text{index} + 1$ in storage!

Application to heaps

- The last node of a heap of n keys is indexed n in the array.
Vector-based Implementation

Binary-Tree

- \(p(v) \): the rank of \(v \) stored in array \(A \) of size \(N \).
- If \(v \) is the root, then \(p(v) = 1 \).
- If \(v \) is the left child of \(u \), then \(p(v) = 2p(u) \).
- If \(v \) is the right child of \(u \), then \(p(v) = 2p(u) + 1 \).
- **Convention**: \(p(v) = \text{index} + 1 \) in storage!

Application to heaps

- The last node of a heap of \(n \) keys is indexed \(n \) in the array.
- The first empty external node is then indexed \(n + 1 \).
Vector-based Implementation

Binary-Tree

- $p(v)$: the rank of v stored in array A of size N.
- If v is the root, then $p(v) = 1$.
- If v is the left child of u, then $p(v) = 2p(u)$.
- If v is the right child of u, then $p(v) = 2p(u) + 1$.
- **Convention**: $p(v) = index + 1$ in storage!

Application to heaps

- The last node of a heap of n keys is indexed n in the array.
- The first empty external node is then indexed $n + 1$.
- Don’t need to store external nodes explicitly.
Heap Example: only keys
Heap Example: only keys

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]
Insertion

Goals

- Maintain three properties of heap.
- Cost \sim the height of the heap. i.e., $O(h) = O(\log(n))$.

External Nodes as "place-holders".

Heap-Order Property: for every node v other than the root, its key \geq the key of its parent.

Complete Binary Trees: binary tree with height h and maximum number of nodes in all levels $0, \cdots, h-1$. In level $h-1$, the internal nodes are to the left of the external nodes.

Last Node: as the rightmost internal node on level $h-1$.

Insertion

Goals

- Maintain three properties of heap.
- Cost \sim the height of the heap. i.e., $O(h) = O(\log(n))$.
- External Nodes as ”place-holders”.
- Heap-Order Property: for every node v other than the root, its key \geq the key of its parent.
- Complete Binary Trees: binary tree with height h and maximum number of nodes in all levels $0, \ldots, h - 1$. In level $h - 1$, the internal nodes are to the left of the external nodes.
- Last Node: as the rightmost internal node on level $h - 1$.
Insertion: Implementation

insertItem\((k, e)\)

- Insert \((k, e)\) after the last node of the heap.
Insertion: Implementation

\textbf{insertItem}(k, e)

- Insert \((k, e)\) after the last node of the heap.
- Up-Heap Bubbling on node \((k, e)\).
Insertion: Implementation

\textbf{insertItem}(k, e)

- Insert \((k, e)\) after the last node of the heap.
- Up-Heap Bubbling on node \((k, e)\).
- Up-Heap bubbling on any node \(z\) is as follows. If \(z\) is root, stop. Otherwise, let \(u\) be \(z\)’s parent. If \(key(z) < key(u)\), then swap the key-element pair stored in node \(z\), \(u\) and continue up-heap bubbling on \(u\). Otherwise, stop!

\textbf{Array-based Implementation}

- \(O(1)\) for inserting after the last node. Update the last node pointer.
- \(O(h)\) for Up-Heap Bubbling. i.e., \(O(\log n)\).
Insertion: Implementation

\[\text{insertItem}(k, e) \]

- Insert \((k, e)\) after the last node of the heap.
- Up-Heap Bubbling on node \((k, e)\).
- Up-Heap bubbling on any node \(z\) is as follows. If \(z\) is root, stop. Otherwise, let \(u\) be \(z\)'s parent. If \(\text{key}(z) < \text{key}(u)\), then swap the key-element pair stored in node \(z, u\) and continue up-heap bubbling on \(u\). Otherwise, stop!

Array-based Implementation

- \(O(1)\) for inserting after the last node. Update the last node pointer.
- \(O(h)\) for Up-Heap Bubbling. i.e., \(O(\log n)\).
Heap Example: Insertion with key 2

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]
Heap Example: Insertion with key 2

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8, 2]
Heap Example: Insertion with key 2

[4, 5, 6, 15, 9, 7, 2, 16, 25, 14, 12, 11, 8, 20]
Heap Example: Insertion with key 2

[4, 5, 2, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]
Heap Example: Insertion with key 2

[2, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]
Insertion: Correctness

- Insertion after the last node \Rightarrow internal-only storage and complete binary trees.
Insertion: Correctness

- Insertion after the last node ⇒ internal-only storage and complete binary trees.
- Up-Heap Bubble: Heap-Order Property. How to prove?
Insertion: Correctness

- Insertion after the last node \Rightarrow internal-only storage and complete binary trees.
- Up-Heap Bubble: Heap-Order Property. How to prove?
- UP-Heap Bubble can start from anywhere as long as its subtree is a valid heap!
Insertion: Correctness

- Insertion after the last node \Rightarrow internal-only storage and complete binary trees.
- Up-Heap Bubble: Heap-Order Property. How to prove?
- UP-Heap Bubble can start from anywhere as long as its subtree is a valid heap!

Step-by-Step Snapshots of the Array

- $[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]$
- $[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8, 2]$
- $[4, 5, 6, 15, 9, 7, 2, 16, 25, 14, 12, 11, 8, 20]$
- $[4, 5, 2, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]$
- $[2, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]$
Removal: Implementation

```java
removeMin()
```

- remove the root of the heap.
Removal: Implementation

removeMin()

- remove the root of the heap.
- Move the last node to the root.
Removal: Implementation

\texttt{removeMin()}

- remove the root of the heap.
- Move the last node to the root.
- Down-Heap Bubbling on node \((k, e)\).
Removal: Implementation

removeMin()

- remove the root of the heap.
- Move the last node to the root.
- Down-Heap Bubbling on node \((k, e)\).
- Down-Heap bubbling on any node \(z\) is as follows. If \(z\) and its children satisfy the Head-Order property, stop. Otherwise, let \(u\) be \(z\)’s child with the smallest key. Swap the key-element pair stored in node \(z, u\) and continue down-heap bubbling on \(u\).
Removal: Implementation

removeMin()

- remove the root of the heap.
- Move the last node to the root.
- Down-Heap Bubbling on node \((k, e)\).
- Down-Heap bubbling on any node \(z\) is as follows. If \(z\) and its children satisfy the Head-Order property, stop. Otherwise, let \(u\) be \(z\)'s child with the smallest key. Swap the key-element pair stored in node \(z\), \(u\) and continue down-heap bubbling on \(u\).

Array-based Implementation

- \(O(1)\) for removing the root, and moving the last node to the root.
- \(O(h)\) for Down-Heap Bubbling. i.e., \(O(\log n)\).
Heap Example: removeMin()

[2, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]
Heap Example: removeMin()

[20, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8]
Heap Example: removeMin()

[4, 5, 20, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8]
Heap Example: removeMin()

[4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]
RemoveMin(): Correctness

- Remove the root and move the last node to the root ⇒ internal-only storage and complete binary trees.
RemoveMin(): Correctness

- Remove the root and move the last node to the root \Rightarrow internal-only storage and complete binary trees.
- Down-Heap Bubble: Heap-Order Property. How to prove?
RemoveMin(): Correctness

- Remove the root and move the last node to the root ⇒ internal-only storage and complete binary trees.
- Down-Heap Bubble: Heap-Order Property. How to prove?
- Down-Heap Bubble can start from any node as long as anywhere else except its subtree is a valid heap!
RemoveMin(): Correctness

- Remove the root and move the last node to the root ⇒ internal-only storage and complete binary trees.
- Down-Heap Bubble: Heap-Order Property. How to prove?
- Down-Heap Bubble can start from any node as long as anywhere else except its subtree is a valid heap!

Step-by-Step Snapshots of the Array

- [2, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8, 20]
- [20, 5, 4, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8]
- [4, 5, 20, 15, 9, 7, 6, 16, 25, 14, 12, 11, 8]
- [4, 5, 6, 15, 9, 7, 20, 16, 25, 14, 12, 11, 8]
Locator

Assume an abstract object \texttt{locator }\ell \texttt{ that keeps track of the position of each node in heap as well as the key-element pair stored.}
Locator
Assume an abstract object locator ℓ that keeps track of the position of each node in heap as well as the key-element pair stored.

Removeltem(ℓ)

- How? Can we use RemoveMin()?
Locator
Assume an abstract object \texttt{locator} ℓ that keeps track of the position of each node in heap as well as the key-element pair stored.

\textbf{Removeltem(ℓ)}

- How? Can we use \texttt{RemoveMin()}?
- Remove the node at ℓ and move the last node to ℓ.
Heap: Extension

Locator
Assume an abstract object locator ℓ that keeps track of the position of each node in heap as well as the key-element pair stored.

Removeltem(ℓ)

- How? Can we use RemoveMin()?
- Remove the node at ℓ and move the last node to ℓ.
- Up or Down-Heap Bubble on ℓ?
Heap: Extension

Locator
Assume an abstract object locator ℓ that keeps track of the position of each node in heap as well as the key-element pair stored.

RemovElem(ℓ)

- How? Can we use RemoveMin()?
- Remove the node at ℓ and move the last node to ℓ.
- Up or Down-Heap Bubble on ℓ?

Deal with Max? Deal with both Max and Min?