Lecture 01/25/16

Lecturer: Xiaodi Wu

January 25th, 2016
Total Order & Comparator

Total Order
\(\leq \), defined on every pair of elements, such that

- **Reflexive**: \(k \leq k \).
- **Anti-symmetric**: \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \) \(\Rightarrow k_1 = k_2 \).
- **Transitive**: \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \) \(\Rightarrow k_1 \leq k_3 \).
Total Order & Comparator

Total Order
\(\leq \), defined on every pair of elements, such that
- **Reflexive:** \(k \leq k \).
- **Anti-symmetric:** \(k_1 \leq k_2 \) and \(k_2 \leq k_1 \Rightarrow k_1 = k_2 \).
- **Transitive:** \(k_1 \leq k_2 \) and \(k_2 \leq k_3 \Rightarrow k_1 \leq k_3 \).

Comparators

A comparater is an object that defines a total order on elements in the following way:
- \(\text{isLess}(a,b) \), \(\text{isLessOrEqualTo}(a,b) \)
- \(\text{isEqualTo}(a,b) \)
- \(\text{isGreater}(a,b) \), \(\text{isGreaterOrEqualTo}(a,b) \)
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by keys. Each element is associated with a key.
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by **keys**. Each element is associated with a **key**.

- **insertItem**(k, e): insert an element e with key k into PQ.
- **removeMin()**: Return and remove from PQ an element with the **smallest** key.
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by **keys**. Each element is associated with a **key**.

- **insertItem**(\(k, e\)): insert an element \(e\) with key \(k\) into PQ.
- **removeMin()**: Return and remove from PQ an element with the **smallest** key.

Simple Implementation on top of Queues

- Store Keys.
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by keys. Each element is associated with a key.

- `insertItem(k, e)`: insert an element `e` with key `k` into PQ.
- `removeMin()`: Return and remove from PQ an element with the smallest key.

Simple Implementation on top of Queues

- Store Keys.
- `insertItem(k, e)`: $O(1)$, `removeMin()`: $O(n)$. How?
Priority Queue (PQ)

Similar to queues, however, insertion and removal principle determined by keys. Each element is associated with a key.

▶ insertItem\((k, e) \): insert an element \(e \) with key \(k \) into PQ.
▶ removeMin(): Return and remove from PQ an element with the smallest key.

Simple Implementation on top of Queues

▶ Store Keys.
▶ insertItem\((k, e) \): \(O(1) \), removeMin(): \(O(n) \). How?
▶ insertItem\((k, e) \): \(O(n) \), removeMin(): \(O(1) \). How?
Algorithm PQ-sort(C, P)
Input: an n-element sequence C, a priority queue P.
Output: the sequence C sorted by the total order relation.

while ! C.isEmpty() do
 e \leftarrow C.removeFirst()
 P.insertItem(e, e).
end while

while ! P.isEmpty() do
 e \leftarrow P.removeMin().
 C.insertLast(e).
end while
PQ-based Sorting

Algorithm PQ-sort(C, P)
Input: an \(n \)-element sequence \(C \), a priority queue \(P \).
Output: the sequence \(C \) sorted by the total order relation.

while ! C.isEmpty() do
 \(e \leftarrow C.removeFirst() \)
 P.insertItem(e, e).
end while

while ! P.isEmpty() do
 \(e \leftarrow P.removeMin() \).
 C.insertLast(e).
end while

Correctness?
PQ-based Sorting: Simple Implementation

- insertItem(k, e): $O(1)$, removeMin(): $O(n)$. Total running time $O(n^2)$. Also known as "selection-sort".
PQ-based Sorting: Simple Implementation

- `insertItem(k, e)`: $O(1)$, `removeMin()`: $O(n)$. Total running time $O(n^2)$. Also known as "selection-sort".
- `insertItem(k, e)`: $O(n)$, `removeMin()`: $O(1)$. Total running time $O(n^2)$. Also known as "insertion-sort".

Improvement on efficiency?

- `insertItem(k, e)`: $O(\log n)$, `removeMin()`: $O(\log n)$. Total running time $O(n \log n)$. Also known as "heap-sort".

Optimal running time? Yes for comparison-based sorting.

Week 9, 10!
PQ-based Sorting: Simple Implementation

- insertItem\((k, e)\): \(O(1)\), removeMin\(): O(n)\).
 Total running time \(O(n^2)\). Also known as ”selection-sort”.
- insertItem\((k, e)\): \(O(n)\), removeMin\(): O(1)\).
 Total running time \(O(n^2)\). Also known as ”insertion-sort”.

Improvement on efficiency?

- insertItem\((k, e)\): \(O(\log n)\), removeMin\(): O(\log n)\).
 Total running time \(O(n \log n)\). Also known as ”heap-sort”.

Optimal running time? Yes for comparison-based sorting.
PQ-based Sorting: Simple Implementation

- \(\text{insertItem}(k, e) \): \(O(1) \), \(\text{removeMin()} \): \(O(n) \).
 Total running time \(O(n^2) \). Also known as "selection-sort".

- \(\text{insertItem}(k, e) \): \(O(n) \), \(\text{removeMin()} \): \(O(1) \).
 Total running time \(O(n^2) \). Also known as "insertion-sort".

Improvement on efficiency?

- \(\text{insertItem}(k, e) \): \(O(\log n) \), \(\text{removeMin()} \): \(O(\log n) \).
 Total running time \(O(n \log n) \). Also known as "heap-sort".

- Optimal running time? Yes for comparison-based sorting.
 Week 9, 10!
How to achieve $O(\log n)$ for both insertion and removal?

Heap

Instead of storing elements in sequences, store in the internal nodes of complete binary trees satisfying the Heap-Order Property.
How to achieve $O(\log n)$ for both insertion and removal?

Heap

Instead of storing elements in sequences, store in the internal nodes of complete binary trees satisfying the Heap-Order Property.

- External Nodes as ”place-holders”.
How to achieve $O(\log n)$ for both insertion and removal?

Heap

Instead of storing elements in sequences, store in the **internal nodes** of **complete binary trees** satisfying the **Heap-Order Property**.

» External Nodes as "place-holders".

» Heap-Order Property: for every node v other than the root, its key \geq the key of its parent.
How to achieve $O(\log n)$ for both insertion and removal?

Heap

Instead of storing elements in sequences, store in the **internal nodes** of **complete binary trees** satisfying the **Heap-Order Property**.

- External Nodes as ”place-holders”.
- Heap-Order Property: for every node v other than the root, its key \geq the key of its parent.
- Complete Binary Trees: binary tree with height h and maximum number of nodes in all levels $0, \cdots, h - 1$. In level $h - 1$, the internal nodes are to the left of the external nodes.
How to achieve $O(\log n)$ for both insertion and removal?

Heap

Instead of storing elements in sequences, store in the **internal nodes** of **complete binary trees** satisfying the **Heap-Order Property**.

- External Nodes as ”place-holders”.
- Heap-Order Property: for every node v other than the root, its key \geq the key of its parent.
- Complete Binary Trees: binary tree with height h and maximum number of nodes in all levels $0, \cdots, h - 1$. In level $h - 1$, the internal nodes are to the left of the external nodes.
- Last Node: as the rightmost internal node on level $h - 1$.
Heap Example: only keys

```
4
 / \
5   6
 / \
15  9
 / \
16 25 14
 / \
12 11
 / \
8
```

```
Heap Property

Theorem (2.10)

A heap $T$ storing $n$ keys has height $h = \lceil \log(n + 1) \rceil$
Heap Property

Theorem (2.10)

A heap $T$ storing $n$ keys has height $h = \lceil \log(n + 1) \rceil$

Proof.

- The total number of internal nodes at least is $2^{h-1}$. 
Heap Property

Theorem (2.10)

A heap $T$ storing $n$ keys has height $h = \lceil \log(n + 1) \rceil$

Proof.

- The total number of internal nodes at least is $2^{h-1}$.
- The total number of internal nodes is at most $2^h - 1$. 
Heap Property

Theorem (2.10)
A heap $T$ storing $n$ keys has height $h = \lceil \log(n + 1) \rceil$

Proof.

- The total number of internal nodes at least is $2^{h-1}$.
- The total number of internal nodes is at most $2^h - 1$.
- Thus, $\log(n + 1) \leq h \leq \log(n) + 1$ and $h$ is an integer.
Theorem (2.10)
A heap $T$ storing $n$ keys has height $h = \lceil \log(n + 1) \rceil$

Proof.
- The total number of internal nodes at least is $2^{h-1}$.
- The total number of internal nodes is at most $2^h - 1$.
- Thus, $\log(n + 1) \leq h \leq \log(n) + 1$ and $h$ is an integer.

Remark: if updates $\sim$ height $h$, then $O(\log(n))$. 