Pre-order: 33, 15, 10, 5, 12, 20, 18, 47, 38, 36, 39, 51, 49
Trees: Post-order

Post-order: 5, 12, 10, 18, 20, 15, 36, 39, 38, 49, 51, 47, 33
A **binary tree** is an ordered tree in which each node has at most two children. It is called **proper** if each internal node has two children (**left** and **right child**).
A **binary tree** is an ordered tree in which each node has at most two children. It is called **proper** if each internal node has two children (**left** and **right child**).

Methods

- `leftChild(v)`: return the left child of `v` if `v` is internal.
- `rightChild(v)`: return the right child of `v` if `v` is internal.
A **binary tree** is an ordered tree in which each node has at most two children. It is called **proper** if each internal node has two children (**left** and **right child**).

Methods

- `leftChild(v)`: return the left child of v if v is internal.
- `rightChild(v)`: return the right child of v if v is internal.

A third traversal order: **inorder**.
Traversals of Binary Trees

Algorithm \(\text{bPreorder}(T, v) \)

"visit" the node \(v \)

\[\text{if } v \text{ is internal then} \]

\[\text{bPreorder}(T, T.\text{leftChild}(v)) \]

\[\text{bPreorder}(T, T.\text{rightChild}(v)) \]

\[\text{end if} \]

Algorithm \(\text{bPostorder}(T, v) \)

\[\text{if } v \text{ is internal then} \]

\[\text{bPostorder}(T, T.\text{leftChild}(v)) \]

\[\text{bPostorder}(T, T.\text{rightChild}(v)) \]

\[\text{end if} \]

"visit" the node \(v \)
Binary Tree: Inorder

Algorithm blnorder(T, v)
if v is internal then
 bPostorder(T, T.leftChild(v))
end if
"visit" the node v
if v is internal then
 bPostorder(T, T.rightChild(v))
end if
Trees: In-order

In-order: 5, 10, 12, 15, 18, 20, 33, 36, 38, 39, 47, 49, 51
Identify Trees from preorder, inorder, postorder visits

- Pre-order: 33, 15, 10, 5, 12, 20, 18, 47, 38, 36, 39, 51, 49
- Post-order: 5, 12, 10, 18, 20, 15, 36, 39, 38, 49, 51, 47, 33
- In-order: 5, 10, 12, 15, 18, 20, 33, 36, 38, 39, 47, 49, 51

How?

- Use Pre-order or Post-order to identify the root.
- Use In-order to identify both sub-trees.
- Apply the above procedure recursively.
Identify Trees from preorder, inorder, postorder visits

- Pre-order: 33, 15, 10, 5, 12, 20, 18, 47, 38, 36, 39, 51, 49
- Post-order: 5, 12, 10, 18, 20, 15, 36, 39, 38, 49, 51, 47, 33
- In-order: 5, 10, 12, 15, 18, 20, 33, 36, 38, 39, 47, 49, 51

How?
- Use Pre-order or Post-order to identify the root.
Identify Trees from preorder, inorder, postorder visits

- Pre-order: 33, 15, 10, 5, 12, 20, 18, 47, 38, 36, 39, 51, 49
- Post-order: 5, 12, 10, 18, 20, 15, 36, 39, 38, 49, 51, 47, 33
- In-order: 5, 10, 12, 15, 18, 20 , 33, 36, 38, 39, 47, 49, 51

How?

- Use Pre-order or Post-order to identify the root.
- Use In-order to identify both sub-trees.
Identify Trees from preorder, inorder, postorder visits

- Pre-order: 33, 15, 10, 5, 12, 20, 18, 47, 38, 36, 39, 51, 49
- Post-order: 5, 12, 10, 18, 20, 15, 36, 39, 38, 49, 51, 47, 33
- In-order: 5, 10, 12, 15, 18, 20, 33, 36, 38, 39, 47, 49, 51

How?
- Use Pre-order or Post-order to identify the root.
- Use In-order to identify both sub-trees.
- Apply the above procedure recursively.
Arithmetic Expression

(((3 + 1) \times 3)/((9 - 5) + 2)) - ((3 \times (7 - 4)) + 6)
Arithmetic Expression: Preorder

\[- \frac{3}{1} \times \frac{2}{3} - 9 + 5 \times \left(\frac{2}{3} - 7 \times 4 \right) + 6 \]
Arithmetic Expression: Preorder

\[- \left(\frac{\times (+(3)(1))(3)}{+(-9)(5)(2))} \right) (\times (3)(-7)(4))(6) \]
Arithmetic Expression: Postorder

\[
\begin{align*}
\text{Postorder:} & \quad 3 - 7 \\
\text{Expression:} & \quad \frac{((3)(1)+)(3) \times (((9)(5)-2)+)}{(((3)((7)(4)-5) \times)(6)+)-6}\end{align*}
\]
Arithmetic Expression: Postorder

\[(((3)(1)+)(3\times)((9)(5)-(2)+)/)((3)((7)(4)-)\times)(6)+)- \]
Arithmetic Expression: Inorder

\[- \frac{((3 + 1) \times 3)}{((9 - 5) + 2)} - ((3 \times (7 - 4)) + 6)\]
Arithmetic Expression: Inorder

\[(((3 + 1) \times 3)/((9 - 5) + 2)) - ((3 \times (7 - 4)) + 6) \]
Theorem

Let T be a (proper) binary tree with n nodes, h the height of T. We have

- # external nodes of T is between $h + 1$ and 2^h.
- # internal nodes of T is between h and $2^h - 1$.
- The height of T is between $\log(n + 1) - 1$ and $(n - 1)/2$.
Properties about Binary Trees

Theorem (Theorem 2.9, on page 85)

In a (proper) binary tree T, the number of external nodes is 1 more than the number of internal nodes.

Proof. By induction,

- If T only has one node, it must be external. Thus, no internal node. The statement holds.
- Otherwise, T has at least one external node with its parent. Remove any external node w and its parent v, then connect w's sibling to v's parent. The tree remains proper and binary, but smaller.
Properties about Binary Trees

Theorem (Theorem 2.9, on page 85)

In a (proper) binary tree \(T \), *the number of external nodes is 1 more than the number of internal nodes.*

Proof.

By induction,

- If \(T \) only has one node, it must be external. Thus, no internal node. The statement holds.

- Otherwise, \(T \) has at least one external node with its parent. Remove any external node \(w \) and its parent \(v \), then connect \(w \)'s sibling to \(v \)'s parent. The tree remains proper and binary, but smaller.
Properties about Binary Trees

Theorem (Theorem 2.9, on page 85)

In a (proper) binary tree T, the number of external nodes is 1 more than the number of internal nodes.

Proof.
By induction,

- If T only has one node, it must be external. Thus, no internal node. The statement holds.
- Otherwise, T has at least one external node with its parent. Remove any external node w and its parent v, then connect w’s sibling to v’s parent. The tree remains proper and binary, but smaller.
Properties about Binary Trees

Let $\#e$, $\#i$ be the external/internal nodes of a (proper) binary tree.

- $\#e = \#i + 1$ and $\#e + \#i = n$.

- $n \geq 2^h + 1$. What is this case?

- $n \leq 2^h + 1 - 1$. What is this case?

- $\frac{n - 1}{2} \leq h \leq \log(n + 1) - 1$.

- $h + 1 \leq \#e \leq 2^h$.

- $h \leq \#i \leq 2^h - 1$.

Properties about Binary Trees

Let \(e \), \(i \) be external/internal nodes of a (proper) binary tree.

- \(e = i + 1 \) and \(e + i = n \).
- \(n \geq 2h + 1 \). What is this case?
Properties about Binary Trees

Let \(\#e, \#i \) be \(\# \) external/internal nodes of a (proper) binary tree.

- \(\#e = \#i + 1 \) and \(\#e + \#i = n \).
- \(n \geq 2h + 1 \). What is this case?
- \(n \leq 2^{h+1} - 1 \). What is this case?
Properties about Binary Trees

Let \(\#e, \#i \) be \# external/internal nodes of a (proper) binary tree.

- \(\#e = \#i + 1 \) and \(\#e + \#i = n \).
- \(n \geq 2h + 1 \). What is this case?
- \(n \leq 2^{h+1} - 1 \). What is this case?
- \(\frac{n - 1}{2} \leq h \leq \log(n + 1) - 1 \).
- \(h + 1 \leq \#e \leq 2^h \).
- \(h \leq \#i \leq 2^h - 1 \).
Implementation of Binary Trees

Vector-based Structure

- \(p(v) \): the rank of \(v \) stored in array \(A \) of size \(N \).
- If \(v \) is the root, then \(p(v) = 1 \).
- If \(v \) is the left child of \(u \), then \(p(v) = 2p(u) \).
- If \(v \) is the right child of \(u \), then \(p(v) = 2p(u) + 1 \).
Implementation of Binary Trees

Vector-based Structure

- $p(v)$: the rank of v stored in array A of size N.
- If v is the root, then $p(v) = 1$.
- If v is the left child of u, then $p(v) = 2p(u)$.
- If v is the right child of u, then $p(v) = 2p(u) + 1$.

- methods: leftChild(), rightChild(), root(), parent(), children(), $O(1)$ time.
- Space could be as large as $O(2^{(n+1)/2})$.
Implementation of Binary Trees

Linked Structure: similar to doubly linked list

- Each node: pointers to parent, leftChild, rightChild, and the element stored.
- methods: leftChild(), rightChild(), root(), parent(), children(), $O(1)$ time.
- Space usage $O(n)$.

Lab logistics

- Lab 1 due mid-night this Sunday (1/24).
- Lab 2: 3 weeks, on implementing Trees.
Implementation of Binary Trees

Linked Structure: similar to doubly linked list

- Each node: pointers to parent, leftChild, rightChild, and the element stored.
- methods: leftChild(), rightChild(), root(), parent(), children(), $O(1)$ time.
- Space usage $O(n)$.

Lab logistics

- Lab 1 due mid-night this Sunday (1/24).
- Lab 2: 3 weeks, on implementing Trees.