Trees
Definition (Tree)

A tree T is a set of nodes storing elements in a parent-child relationship s.t.,

- T has a special node r, called the root of T.
- Each node v of T different from r has a parent node u.

Trees: formal definition
Definition (Tree)
A tree T is a set of nodes storing elements in a parent-child relationship s.t.,

- T has a special node r, called the root of T.
- Each node v of T different from r has a parent node u.
- u the parent of $v \Rightarrow v$ the child of u.

Trees: formal definition
Definition (Tree)

A tree T is a set of nodes storing elements in a parent-child relationship s.t.,

- T has a special node r, called the root of T.
- Each node v of T different from r has a parent node u.
- u the parent of v \Rightarrow v the child of u.
- Two children of the same parent are siblings. Ordered if there is an order among siblings.
Definition (Tree)

A tree T is a set of nodes storing elements in a parent-child relationship s.t.,

- T has a special node r, called the root of T.
- Each node v of T different from r has a parent node u.
- u the parent of v \Rightarrow v the child of u.
- Two children of the same parent are siblings. Ordered if there is an order among siblings.
- A node is external is no child, also known as leaves. Otherwise, it is internal.
Trees: formal definition

Definition (Tree)

A tree T is a set of nodes storing elements in a parent-child relationship s.t.,

- T has a special node r, called the root of T.
- Each node v of T different from r has a parent node u.
- u the parent of v \Rightarrow v the child of u.
- Two children of the same parent are siblings. Ordered if there is an order among siblings.
- A node is external is no child, also known as leaves. Otherwise, it is internal.
- An ancestor of a node is either the node itself or an ancestor of the parent of the node. Conversely, a descendant.
Trees

```
  33
 /   \
15    47
|      |
10    38
|    |  |
5   12 18
          |
           36
           |
           39
           |
           49
```
The \textbf{depth} of v is the number of ancestors of v, excluding v itself. The root has depth 0. Or, equivalently,

- If v is the root, then depth of v is 0.
- Otherwise, the depth of $v = \text{depth of } v\text{'s parent} + 1$.

Trees

The **depth** of \(v \) is the number of ancestors of \(v \), excluding \(v \) itself. The root has depth 0. Or, equivalently,

- If \(v \) is the root, then depth of \(v \) is 0.
- Otherwise, \(\text{depth of } v = \text{depth of } v\text{'s parent } + 1 \).

The **height** of a tree \(T \) is the maximum of the depth of external nodes of \(T \). Or, equivalently, define the height of a node \(v \) as

- 0 if \(v \) is an external node.
- \(1 + \max\{ \text{height of a child of } v \} \) otherwise.
The **depth** of v is the number of ancestors of v, excluding v itself. The root has depth 0. Or, equivalently,

- If v is the root, then depth of v is 0.
- Otherwise, the depth of $v = \text{depth of } v$’s parent +1.

The **height** of a tree T is the maximum of the depth of external nodes of T. Or, equivalently, define the height of a node v as

- 0 if v is an external node.
- $1 + \max\{ \text{height of a child of } v \}$ otherwise.

The **height** of a tree is the height of the root of T.
ADT: Trees

Accessor Methods

- `root()`: return the root of the tree.
- `parent(v)`: return the parent of `v`; error if `v` is the root.
- `child(v)`: return an iterator of the children of `v`.

Query & Generic Methods

- `isExternal()`, `isInternal()`, `isRoot()`;
- `size()`;
- `elements()`;
ADT: Trees

Accessor Methods

▶ root(): return the root of the tree.
▶ parent(v): return the parent of v; error if v is the root.
▶ child(v): return an iterator of the children of v.

Query & Generic Methods

▶ isExternal(), isInternal(), isRoot();
▶ size();
▶ elements();
Return the depth of v in T

Algorithm depth(T, v)

if T.isRoot(v) then
 return 0;
else
 return 1 + depth(T, T.parent(v));
end if
Return the depth of v in T

Algorithm `depth(T, v)`
- **if** `T.isRoot(v)` **then**
 - **return** 0;
- **else**
 - **return** 1 + `depth(T, T.parent(v));`
- **end if**

Complexity

$O(n)$: n is $\#$ nodes in T. What is the worst case?
Height

Return the height of \(v \) in \(T \)

Algorithm \(\text{height}(T, v) \)

if \(T.\text{isExternal}(v) \) then

 return 0;

else

 \(h \leftarrow 0 \)
 for each \(w \in T.\text{children}(v) \) do
 \(h \leftarrow \max(h, \text{height}(T, w)) \)
 end for
 return 1 + \(h \);

end if

Complexity

The height of \(T \) is then \(\text{height}(T, T.\text{root}) \). The complexity is \(O(n) \)!
Return the height of \(v \) in \(T \)

Algorithm `height(T, v)`

- if \(T.\text{isExternal}(v) \) then
 - return 0;
- else
 - \(h \leftarrow 0 \)
 - for each \(w \in T.\text{children}(v) \) do
 - \(h \leftarrow \max(h, \text{height}(T, w)) \)
 - end for
 - return \(1 + h \);
- end if

Complexity

The height of \(T \) is then \(\text{height}(T, T.\text{root}()) \). The complexity is \(O(n) \)!
Property about Trees

Theorem

Let T be a tree with n nodes, c_v the number of children of node v.

$$\sum_{v \in T} c_v = n - 1.$$
Property about Trees

Theorem
Let \(T \) be a tree with \(n \) nodes, \(c_v \) the number of children of node \(v \).

\[
\sum_{v \in T} c_v = n - 1.
\]

Proof.
Counting from another perspective: each node (except the root) is counted only once from its unique parent. \(\square \)
A **traversal** of a tree \(T \) is a systematical way of "visiting" all nodes in \(T \).
Traversals of Trees

A **traversal** of a tree T is a systematical way of "visiting" all nodes in T.

- **Pre-order**: Root first and then visit each sub-tree in order.
- **Post-order**: Visit each sub-tree first and then the root.
Traversals of Trees

Algorithm preorder(T, v)

"visit" the node v

for each child w of v do

preorder(T, w)

end for

Algorithm postorder(T, v)

for each child w of v do

post-order(T, w)

end for

"visit" the node v
Traversal of Trees

Algorithm preorder(T, v)

"visit" the node v

for each child w of v do

 preorder(T, w)

end for

Algorithm postorder(T, v)

for each child w of v do

 post-order(T, w)

end for

"visit" the node v

Complexity

$O(n)$: similar counting as the analysis in height().
Trees: Pre-order

33, 15, 10, 5, 12, 20, 18, 47, 38, 36, 39, 51, 49
Trees: Pre-order

Pre-order: 33, 15, 10, 5, 12, 20, 18, 47, 38, 36, 39, 51, 49
Trees: Post-order

Post-order: 5, 12, 10, 18, 20, 15, 36, 39, 38, 49, 51, 47, 33
Post-order: 5, 12, 10, 18, 20, 15, 36, 39, 38, 49, 51, 47, 33