Lecture 01/13/16

Lecturer: Xiaodi Wu

January 13th, 2016
Queue: Array-based Implementation

Implementation with an N-element array Q, with elements stored from $S[f]$ to $S[r - 1]$, where f, $r - 1$ refer to the indices of the front and the rear of the queue. $f == r$ implies an empty queue.
Queue: Array-based Implementation

Implementation with an N-element array Q, with elements stored from $S[f]$ to $S[r - 1]$, where f, $r - 1$ refer to the indices of the front and the rear of the queue. $f == r$ implies an empty queue.

Q: what if r gets bigger than N?
Queue: Array-based Implementation

Implementation with an N-element array Q, with elements stored from $S[f]$ to $S[r - 1]$, where f, $r - 1$ refer to the indices of the front and the rear of the queue. $f == r$ implies an empty queue. Q: what if r gets bigger than N?

▶ size(): return $(N + (r - f)) \mod N$.
Queue: Array-based Implementation

Implementation with an N-element array Q, with elements stored from $S[f]$ to $S[r - 1]$, where f, $r - 1$ refer to the indices of the front and the rear of the queue. $f == r$ implies an empty queue.

Q: what if r gets bigger than N?

- size(): return $(N + (r - f)) \mod N$.
- isEmpty(): return True if $r == f$; else return False;
- front(): return $S[f]$;
Algorithm enqueue(o)
if size()=N-1 then
 queue-full exception
end if
Q[r] ← o
r ← (r + 1) mod N

Algorithm dequeue()
if isEmpty() then
 queue-empty exception
end if
e ← Q[f]
Q[f] ← null
f ← (f + 1) mod N
return e.
FIFO vs LIFO

FIFO implemented by 2 LIFOs
FIFO vs LIFO

FIFO implemented by 2 LIFOs

- enqueue(o): stack2.push(o).

- dequeue(): if (!stack1.isEmpty()) then return stack1.pop(); else while (!stack2.isEmpty()) do { o = stack2.pop(); stack1.push(o); } return stack1.pop();
FIFO vs LIFO

FIFO implemented by 2 LIFOs

- **enqueue(o):** stack2.push(o).
- **dequeue():**
  ```java
  if (!stack1.isEmpty()) then return stack1.pop();
  else while (!stack2.isEmpty()) do
    { o=stack2.pop(); stack1.push(o); }
  return stack1.pop();
  ```
FIFO vs LIFO

FIFO implemented by 2 LIFOs

- enqueue(o): stack2.push(o).
- dequeue(): if (! stack1.isEmpty()) then return stack1.pop(); else while (! stack2.isEmpty()) do
 \{ o=stack2.pop(); stack1.push(o); \} return stack1.pop();

Question: LIFO implemented by 2 FIFOs?
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with \(n \) elements, what is the time complexity of multi-pop()?
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with n elements, what is the time complexity of multi-pop()? $O(n)$.
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with \(n \) elements, what is the time complexity of multi-pop()? \(O(n) \).

Time of \(m \) push() and/or multi-pop() operations from an empty stack

- push() takes \(O(1) \), multi-pop() takes \(O(m) \), worst case \(m \times O(m) = O(m^2) \).
Amortized Analysis

Stack: multi-pop()

- multi-pop(): pop out all objects in the stack by LIFO principle.
- multi-pop(): while (!isEmpty()) do pop();
- For stack with \(n \) elements, what is the time complexity of multi-pop()? \(O(n) \).

Time of \(m \) push() and/or multi-pop() operations from an empty stack

- push() takes \(O(1) \), multi-pop() takes \(O(m) \), worst case \(m \times O(m) = O(m^2) \).
- It is a correct \(O(\cdot) \) statement, but a huge over-estimate.
Amortized Analysis: cont’d

Theorem (1.30 on page 34)

A series of \(m \) operations on an initially empty stack takes \(O(m) \) time.
Amortized Analysis: cont’d

Theorem (1.30 on page 34)

A series of \(m \) operations on an initially empty stack takes \(O(m) \) time.

Proof.

Let \(M_0, \ldots, M_{m-1} \) be the series of operations, and let \(M_{i_0}, \ldots, M_{i_{k-1}} \) be the \(k \) multi-pop() operations. We have

\[
0 \leq i_0 \leq \cdots \leq i_{k-1} \leq n - 1, \quad i_{-1} = -1.
\]
Amortized Analysis: cont’d

Theorem (1.30 on page 34)

A series of \(m \) operations on an initially empty stack takes \(O(m) \) time.

Proof.

Let \(M_0, \cdots, M_{m-1} \) be the series of operations, and let \(M_{i_0}, \cdots, M_{i_{k-1}} \) be the \(k \) multi-pop() operations. We have

\[
0 \leq i_0 \leq \cdots \leq i_{k-1} \leq n - 1, \quad i_{k-1} = -1.
\]

Time cost of \(M_{i_{j+1}} \) to \(M_{i_j} \) for each \(j = 0, \cdots, k - 1 \):

\[
\text{\(i_j - i_{j-1} - 1 \) operations of push(). cost } O(i_j - i_{j-1}).\]
Theorem (1.30 on page 34)
A series of \(m\) operations on an initially empty stack takes \(O(m)\) time.

Proof.
Let \(M_0, \ldots, M_{m-1}\) be the series of operations, and let \(M_{i_0}, \ldots, M_{i_{k-1}}\) be the \(k\) multi-pop() operations. We have

\[0 \leq i_0 \leq \cdots \leq i_{k-1} \leq n - 1, \ i_{-1} = -1.\]

Time cost of \(M_{i_{j+1}}\) to \(M_{i_j}\) for each \(j = 0, \ldots, k - 1\):

- \(i_j - i_{j-1} - 1\) operations of push(). cost \(O(i_j - i_{j-1})\).
- 1 multi-pop(): only \(i_j - i_{j-1} - 1\) elements in the stack. cost: \(O(i_j - i_{j-1})\).
Amortized Analysis: cont’d

Theorem (1.30 on page 34)

A series of m operations on an initially empty stack takes $O(m)$ time.

Proof.

Sum up, we have the total time is (telescoping sum)

$$O \left(\sum_{j=0}^{k-1} (i_j - i_{j-1}) \right) = O(m).$$
Amortized Analysis: cont’d

Theorem (1.30 on page 34)

A series of m operations on an initially empty stack takes $O(m)$ time.

Proof.

Sum up, we have the total time is (telescoping sum)

$$O\left(\sum_{j=0}^{k-1} (i_j - i_{j-1})\right) = O(m).$$

Remark: Worst case analysis of a single operation leads to loose bounds for a series of operations!
Amortized Analysis: cont’d

For a single operation,

\[
\text{amortized running time} = \frac{\text{worst case complexity of } m \text{ operations}}{m}.
\]
Amortized Analysis: cont’d

For a single operation,

\[
\text{amortized running time} = \frac{\text{worst case complexity of } m \text{ operations}}{m}.
\]

For multi-type operations, e.g., 2 types

\[
\text{worst case complexity of } m_1 \text{ op1 and } m_2 \text{ op2} \\ \leq \text{amortized complexity op1} \times m_1 + \text{amortized complexity op2} \times m_2.
\]
Amortized Analysis: cont’d

For a single operation,

\[
\text{amortized running time} = \frac{\text{worst case complexity of } m \text{ operations}}{m}.
\]

For multi-type operations, e.g., 2 types

\[
\text{worst case complexity of } m_1 \text{ op1 and } m_2 \text{ op2} \\
\leq \text{ amortized complexity op1} \times m_1 + \text{ amortized complexity op2} \times m_2.
\]

Thus, push() and multi-pop() have amortized complexity \(O(1)\).
Amortized Analysis: more intuitive derivation

- **Question**: perform amortized analysis besides by definition?
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
- **Key:** analyze and upper bound the complexity of a series of operations!
Amortized Analysis: more intuitive derivation

- **Question**: perform amortized analysis besides by definition?
- **Key**: analyze and upper bound the complexity of a series of operations!

\[
\text{\#primitive operations in } m \text{ operations } \leq \text{ resources spent}
\]
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
- **Key:** analyze and upper bound the complexity of a series of operations!

\[
\text{\#primitive operations in } m \text{ operations} \leq \text{resources spent}
\]

When the resource is
- **Money \(\Rightarrow\) The Accounting Method.**
Amortized Analysis: more intuitive derivation

- **Question:** perform amortized analysis besides by definition?
- **Key:** analyze and upper bound the complexity of a series of operations!

\[
\text{#primitive operations in } m \text{ operations } \leq \text{ resources spent}
\]

When the resource is

- Money \Rightarrow **The Accounting Method**.
- Energy \Rightarrow **The Potential Function Method**
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
- Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
- Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
- Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!
The Accounting Method

Principle

- Every primitive operation costs 1-unit money.
- Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
- Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!

Correctness

\[\#\text{all primitive ops} \leq \#\text{all money deposited} = \text{amortized complexity} \times \#\text{ ops} \]
The Accounting Method

Principle

▶ Every primitive operation costs 1-unit money.
▶ Deposit money whenever performing an operation (amortized complexity). Money spent after every primitive operation.
▶ Your bank starts with zero-balance and remains non-negative during the whole procedure. No loan!

Correctness

\[
\text{#all primitive ops} \leq \text{#all money deposited} = \text{amortized complexity} \times \text{# ops}
\]

\leq \text{due to your balance being non-negative all the time!}
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
- deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
- deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
- A formal proof requires showing the **non-negativity** of your balance.
The Accounting Method: Example

Push() & Multi-pop()

- deposit 2$ for each Push(): 1$ is spent to execute the push operation, 1$ is left in the bank for later.
- deposit 0$ for each Multi-pop(): its cost is paid for by the deposit made at the push operation.
- A formal proof requires showing the **non-negativity** of your balance.

Credit Invariant

- Invariant: # of (bank) credits = # of items in the stack.
- Prove the invariant for each operation: push(), multi-pop().