Inference: Miscellaneous

Daniel Lowd
May 22, 2013
Review: Exact Inference

• Brute force
 – IDEA: Multiply and add
 – Exponential in the number of variables.

• Variable elimination
 – IDEA: A smarter way to multiply and add
 – Exponential in the treewidth of the induced graph.

• Belief propagation in trees
 – IDEA: Variable elimination in all directions at once

• Junction tree algorithm (briefly covered):
 – IDEA: Run BP in a tree of cliques satisfying the “running intersection” property.
Review: Approximate Inference

• Loopy belief propagation
 – IDEA: Run belief propagation in a loopy graph and hope for the best
 – Bad when the network has tight loops with strong interactions

• Gibbs sampling
 – IDEA: Wander around randomly, resampling one variable at a time given Markov blanket. Average.
 – Bad when transitioning between modes is very unlikely.
 – Usually much better than rejection sampling and likelihood weighting.
Variational Inference

• You have a hard probability distribution P. What to do?
• Pick an “easy” distribution Q, e.g.:

 \[Q(X_1, \ldots, X_n) = Q(X_1)Q(X_2)\ldots Q(X_n) \]
• Pick the parameters of Q so that it is “close” to the distribution you want, P:
 \[
 \min_Q D(P, Q)
 \]
• Use Q to answer whatever questions you want.
How to find Q

• Typically minimize “reverse” KL-divergence:

\[KL(Q \parallel P) = \sum_x Q(x) \log \frac{P(x)}{Q(x)} \]

• Updates are simple: (relatively speaking)

\[Q(X_i) \leftarrow \exp \left(E_{X_{-i} \sim Q} \left[\log P(X_i \mid X_{-i}) \right] \right) / Z_i \]

• Finds local optimum, which typically represents one mode of the probability distribution.

• Gives you a lower bound on the partition function. (Lots of work focuses on this aspect!)
Maximum a Posteriori (MAP) Inference

- **Goal**: find most likely state of all variables.
- Iterated conditional modes:
 Like Gibbs sampling, but always pick most likely state until you reach a local optimum.
- Max-product algorithm:
 Like BP, but use max instead of sum.
- Graph cuts:
 If all potentials are associative, MAP solution can be found in polynomial time with min-cut algorithm.
Detour: Log-linear Models

Product of factors can be represented as an exponentiated sum of log-factors:

\[P(X_1, \ldots, X_n) = \frac{1}{Z} \prod_i \phi_1(D_i) \]

\[\log P(X_1, \ldots, X_n) = -\log Z + \sum_i \log \phi_1(D_i) \]

\[P(X_1, \ldots, X_n) = \frac{1}{Z} \exp \left(\sum_i \log \phi_1(D_i) \right) \]
Log-linear Models

Log-factors can be represented as weighted functions, sometimes much more compactly:

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(\varphi_1(A, B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>10</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>1</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>1</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>10</td>
</tr>
</tbody>
</table>

\[
\log \left(\log 10 \right) f_{A=B}(A, B) = (\log 10) f_1(A, B) + (\log 1) f_2(A, B) + (\log 1) f_3(A, B) + (\log 10) f_4(A, B)
\]
Log-linear Models

Putting it all together...

\[\log P(X_1, \ldots, X_n) = \sum_i w_i f_i(D_i) - \log Z \]

How do we maximize this?
MAP is an optimization problem

• Use integer linear programming
• Use weighted MAX-SAT solvers
 – Encode each feature as a clause.
 – Weighted MAX-SAT tries to maximize the sum of satisfied clause weights.

• Dual-decomposition
 – Maximize each factor (or set of factors) separately
 – Adjust factor parameters to encourage them to agree.
 – Similar ideas work for computing marginals, too!
Themes in Inference

• Optimization
• Relaxations
• Bounds
• Exploiting structure